You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
mTOR in the Brain under Physiological Conditions
ammalian/mechanistic target of rapamycin (mTOR) is a 289 kDa serine–threonine kinase and a key element of two mTOR complexes called mTORC1 and mTORC2 (mTORCs). Furthermore, mTOR is highly conserved and is the center of multiples signaling pathways and coordinates important cellular processes such as cell growth and metabolism. Although mTOR is ubiquitously expressed, it is especially abundant in the brain. Therefore, mTOR dysfunction profoundly affects the central nervous system (CNS).
  • 1.6K
  • 05 May 2022
Topic Review
Cell-Type Annotation
Multicellular organisms consist of cells that can be categorized by their function and morphology. Single-cell transcriptomics makes it possible to individually profile thousands of cells in multiple tissues and organisms within a single experiment. Determining and labeling cell types or states in single cell transcriptomic data is known as cell-type annotation or identification. Several methods are employed for cell-type annotation, including signature scoring, supervised learning, cell-integration-based label transfer, and semi-supervised annotation. Considering the lineage relationships among cell types, hierarchical classification methods are crucial for accurately identifying cell types and subtypes at an optimal clustering resolution. The use of well-curated reference datasets, implementation of quality control measures, and careful consideration of cluster resolutions heavily influence the reliability of cell-type annotation. The aim of cell-type annotation is to gain insights into cell heterogeneity in various biological processes and diseases, with the potential to drive improvements in therapeutic interventions.
  • 1.6K
  • 08 Aug 2023
Topic Review
L–Tryptophan Derivatives as Essential Compounds for Serotonin Synthesis
L–Tryptophan (Trp) and its derivatives, such as 5-hydroxy–L–tryptophan (5-OH-L-Trp), and tryptamine, are related to biochemical reactions that lead to serotonin synthesis in the brain’s neurotransmitters, lower levels of which are observed in clinically depressed patients.
  • 1.6K
  • 10 Apr 2023
Topic Review
Mammalian Aquaporins
Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0–AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. In a recent review published in Int. J. Mol. Sci. (https://doi.org/10.3390/ijms20082039), we summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, our review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored.
  • 1.6K
  • 06 Sep 2021
Topic Review
L19-TNF
Tumor necrosis factor (TNF) is used as a pro-inflammatory payload to trigger haemorrhagic necrosis and boost anti-cancer immunity at the tumor site. There is  a depotentiated version of TNF (carrying the single point mutation I97A), which displayed reduced binding affinity to its cognate receptor tumor necrosis factor receptor 1 (TNFR-1) and lower biocidal activity. 
  • 1.5K
  • 29 Mar 2022
Topic Review
Hydroxyapatite in Oral Care Products
Calcium phosphate compounds form the inorganic phases of our mineralised tissues such as bone and teeth, playing an important role in hard tissue engineering and regenerative medicine. In dentistry and oral care products, hydroxyapatite (HA) is a stable and biocompatible calcium phosphate with low solubility being used for various applications such as tooth remineralisation, reduction of tooth sensitivity, oral biofilm control, and tooth whitening. 
  • 1.5K
  • 08 Sep 2021
Topic Review
EV-Based Vaccines
Extracellular vesicles (EVs) are secreted from almost all human cells and mediate intercellular communication by transferring heterogeneous molecules (i.e., DNA, RNAs, proteins, and lipids). In this way, EVs participate in various biological processes, including immune responses. Viruses can hijack EV biogenesis systems for their dissemination, while EVs from infected cells can transfer viral proteins to uninfected cells and to immune cells in order to mask the infection or to trigger a response. Several studies have highlighted the role of native or engineered EVs in the induction of B cell and CD8(+) T cell reactions against viral proteins, strongly suggesting these antigen-presenting EVs as a novel strategy for vaccine design, including the emerging COVID-19. EV-based vaccines overcome some limitations of conventional vaccines and introduce novel unique characteristics useful in vaccine design, including higher bio-safety and efficiency as antigen-presenting systems and as adjuvants.
  • 1.5K
  • 02 Feb 2021
Topic Review
Principal Postulates of Centrosomal Biology
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensory primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles.
  • 1.5K
  • 15 Oct 2020
Topic Review
Gliotoxins
Gliotoxin is a kind of epipolythiodioxopiperazine derived from different fungi that is characterized by a disulfide bridge. Gliotoxins can be biosynthesized by a gli gene cluster and regulated by a positive GliZ regulator. Gliotoxins show cytotoxic effects via the suppression the function of macrophage immune function, inflammation, antiangiogenesis, DNA damage by ROS production, peroxide damage by the inhibition of various enzymes, and apoptosis through different signal pathways. In the other hand, gliotoxins can also be beneficial with different doses. Low doses of gliotoxin can be used as an antioxidant, in the diagnosis and treatment of HIV, and as an anti-tumor agent in the future. Gliotoxins have also been used in the control of plant pathogens, including Pythium ultimum and Sclerotinia sclerotiorum.
  • 1.5K
  • 23 Dec 2021
Topic Review
Glucagon-Like Peptide 1 Receptor Agonists: Sex Differences
Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are a relatively new class of anti-diabetic medications that have exhibited very promising results in the treatment of type 2 diabetes mellitus (T2DM). According to the 2021 American Diabetes Association guidelines, they constitute one of the preferred add-on agents when metformin monotherapy and lifestyle modifications have failed to achieve adequate glycemic control.
  • 1.5K
  • 06 Apr 2022
Topic Review
Docking Analysis in Research for Novel Enzyme Inhibitors
Approaches for increasing effectiveness of docking analysis in Prediction of inhibitory potency of small molecules, emphasizing in selection of appropriate enzyme 3D-structure and in calculation of probability of binding factors, based on docking analysis to the target site and to the whole enzyme.
  • 1.5K
  • 22 Jan 2025
Topic Review
Porphyrins/Chlorins for Viruses Inactivation
The problem of treating viral infections is extremely important both in connection with the emergence of new viral diseases and in connection with the low efficiency of existing approaches to the treatment of known viral infections. This entry is devoted to the use of porphyrins, chlorins, and phthalocyanines for the fight against viral infections using chemical and photochemical inactivation methods. The purpose of this work is to summarize the main approaches developed to date to chemical and photodynamic inactivation of human and animal viruses using porphyrins and their analogs, as well as to analyze and discuss information on viral targets and antiviral activity of porphyrins, chlorins and their derivatives obtained in the last 10-15 years, in order to identify the most promising areas.
  • 1.5K
  • 23 Jun 2021
Topic Review
Arabidopsis RETICULON-LIKE4 (RTNLB4)
Agrobacterium tumefaciens genetically transforms plant cells by transferring the transfer-DNA (T-DNA) and virulence (Vir) proteins from bacteria via a VirB-encoded type IV secretion system into plants. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. We functionally characterized reticulon-like protein B4 (RTNLB4), which interacted with the A. tumefaciens VirB2 protein, a major component of A. tumefaciens T-pilus. Overexpression or knockdown of RTNLB4 affected the expression of A. tumefaciens elf18 peptide-induced plant defense-related genes and could affect Agrobacterium-mediated transformation rates. Pre-treatment with elf18 peptide decreased Agrobacterium-mediated transient expression efficiency more in wild-type seedlings than RTNLB4 O/E transgenic plants, which suggests that the induced defense responses in RTNLB4 O/E transgenic plants might be affected after bacterial elicitor treatments. We also showed that two VirB2 peptides induced the expression of defense-related genes and H2O2 production and inhibited seedling growth. These typical pathogen-associated molecular pattern-trigged immune responses were less induced in RTNLB4 overexpression transgenic plants. Our findings provide strong evidence that RTNLB4 has major roles in the A. tumefaciens elf18 and VirB2 peptide-derived plant defense responses. We believe this study advances our understanding of possible functions of the RTNLB4 protein in the A. tumefaciens infection process and plant immunity.
  • 1.5K
  • 01 Nov 2020
Topic Review
Crop Resilience to Drought Stress
Among all the abiotic factors, drought is likely to have one of the most detrimental effects on soil organisms and plants. Drought is a major problem for crops because it limits the availability of water, and consequently nutrients which are crucial for plant growth and survival. This results in reduced crop yields, stunted growth, and even plant death, according to the severity and duration of the drought, the plant’s developmental stage, and the plant’s genetic background. The ability to withstand drought is a highly complex characteristic that is controlled by multiple genes, making it one of the most challenging attributes to study, classify, and improve.
  • 1.5K
  • 21 Jun 2023
Topic Review
Insight into Phloem Sap Metabolomics
Phloem sap transport is essential for plant nutrition and development since it mediates redistribution of nutrients, metabolites and signaling molecules. However, its biochemical composition is not so well-known because phloem sap sampling is difficult and does not always allow extensive chemical analysis. Efforts have been devoted to metabolomics analyses of phloem sap using either liquid chromatography or gas chromatography coupled with mass spectrometry. Phloem sap metabolomics is of importance to understand how metabolites can be exchanged between plant organs and how metabolite allocation may impact plant growth and development.
  • 1.5K
  • 13 Apr 2023
Topic Review
Natural Compounds in Thromboembolism Treatment
Venous thromboembolism (VTE) refers to deep vein thrombosis (DVT), whose consequence may be a pulmonary embolism (PE). Thrombosis is associated with significant morbidity and mortality and is the third most common cardiovascular disease after myocardial infarction and stroke. DVT is associated with the formation of a blood clot in a deep vein in the body. Thrombosis promotes slowed blood flow, hypoxia, cell activation, and the associated release of many active substances involved in blood clot formation. All thrombi which adhere to endothelium consist of fibrin, platelets, and trapped red and white blood cells.
  • 1.5K
  • 11 Nov 2020
Topic Review
Continuous Microfluidics-Based Technologies for HIV
HIV-1 is the causative agent of acquired immunodeficiency syndrome (AIDS). It affects millions of people worldwide and the pandemic persists despite the implementation of highly active antiretroviral therapy. A wide spectrum of techniques has been implemented in order to diagnose and monitor AIDS progression over the years. Besides the conventional approaches, microfluidics has provided useful methods for monitoring HIV-1 infection. In this review, we introduce continuous microfluidics as well as the fabrication and handling of microfluidic chips.
  • 1.5K
  • 14 Sep 2020
Topic Review
Heme Oxgenase-1 in cytoprotection
Heme oxygenase catalyzes the rate-limiting step in heme degradation in order to generate biliverdin, carbon monoxide (CO), and iron. The inducible form of the enzyme, heme oxygenase-1 (HO-1), exerts a central role in cellular protection. The substrate, heme, is a potent pro-oxidant that can accelerate inflammatory injury and promote cell death. HO-1 has been implicated as a key mediator of inflammatory cell and tissue injury, as validated in preclinical models of acute lung injury and sepsis. A large body of work has also implicated HO-1 as a cytoprotective molecule against various forms of cell death, including necrosis, apoptosis and newly recognized regulated cell death (RCD) programs such as necroptosis, pyroptosis, and ferroptosis. While the antiapoptotic potential of HO-1 and its reaction product CO in apoptosis regulation has been extensively characterized, relatively fewer studies have explored the regulatory role of HO-1 in other forms of necrotic and inflammatory RCD (i.e., pyroptosis, necroptosis and ferroptosis). HO-1 may provide anti-inflammatory protection in necroptosis or pyroptosis. In contrast, in ferroptosis, HO-1 may play a pro-death role via enhancing iron release. HO-1 has also been implicated in co-regulation of autophagy, a cellular homeostatic program for catabolic recycling of proteins and organelles. While autophagy is primarily associated with cell survival, its occurrence can coincide with RCD programs. 
  • 1.5K
  • 28 Apr 2021
Topic Review
Dermo-Cosmetic Benefits of Marine Macroalgae-Derived Phenolic Compounds
Marine macroalgae have an interesting profile of bioactive compounds and have gained tremendous attention in cosmeceuticals with negligible toxicity effects (cytotoxicity, reproductive toxicity, genotoxicity, mutagenicity, carcinogenicity, etc.) on humans and exhibit strong benefits for the skin. Among the diversified compounds, phenolic compounds are the group of phytochemicals found in high amounts with great structural diversity. Phlorotannin is the most studied polyphenol compound in brown algae, but besides there are some other phenolic compounds observed and studied in macroalgae such as terpenoids, bromophenols, mycosporine amino acids (MAAs), and flavonoids. These compounds are already characterized and studied for their full range of cosmeceutical benefits such as skin whitening, moisturizing, photoprotection, antiaging, antiwrinkle, anti-melanogenic, and antioxidant activities as well as in the treatment of pruritus (caused by acne, eczema, dermatitis, hives, psoriasis), photoaging, and skin pigmentation disorders (hypopigmentation due to the absence of melanocytes and hyperpigmentation caused by skin irritation or metabolic disorders). 
  • 1.5K
  • 05 Dec 2022
Topic Review
Thermophilic Nucleic Acid Polymerases
Nucleic acid polymerases are enzymes that catalyze DNA or RNA synthesis, including DNA polymerases (DNAPs), RNA polymerases (RNAPs), reverse transcriptases (RTs), and RNA-dependent RNA polymerases (RdRps), which play central roles in the storage and transmission of genetic information in living organisms, and have been widely applied in molecular biology and biotechnology. Their unique activities and functions have laid the foundation of many broadly used or modern techniques, including polymerase chain reaction (PCR), DNA sequencing, and DNA information storage. Thermostability is a desired property of nucleic acid polymerases for many of their applications, especially those involving thermocycling.
  • 1.5K
  • 09 Dec 2022
  • Page
  • of
  • 133
Academic Video Service