You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Organic Electronic Devices and Assessment Parameters
Organic electronic devices have gained popularity because of their promising tunable electronic properties, flexibility, low-cost, versatile functionalization, and processability. Organic field effect transistors (OFETs) are not only the fundamental building blocks of flexible and large-area electronic devices but are also a useful tool for measuring charge-carrier mobilities of newly organic semiconductors.
  • 925
  • 06 Apr 2023
Topic Review
Directed Assembly of Particle-Polymer Composites
Particle-polymer dispersions are ubiquitous in additive manufacturing (AM), where they are used as inks to create composite materials with applications to wearable sensors, energy storage materials, and actuation elements. It has been observed that directional alignment of the particle phase in the polymer dispersion can imbue the resulting composite material with enhanced mechanical, electrical, thermal or optical properties. 
  • 921
  • 17 Aug 2021
Topic Review
Biocomposite Based on Natural Polymers
Biopolymers are materials obtained from renewable resources. Despite the exciting properties of biopolymers, such as biocompatibility and environmental sustainability, they do not present antimicrobial properties (except chitosan). However, this lack of antimicrobial properties can be solved by incorporating or encapsulating antimicrobial agents. Natural polymers possess low stability in aqueous media and limited mechanical strength, which could be improved through cross-linking strategies. Hydrogels are biocompatible materials that can be synthesized from natural polymers, forming a cross-linking material. Alginate, collagen, fibrin, chitosan, gelatin, and hyaluronic acid are some natural polymers used to synthesize hydrogels.
  • 919
  • 12 Jul 2022
Topic Review
Patchy Micelles via Crystallization-Driven Self-Assembly
Crystallization-driven self-assembly (CDSA) represents a highly versatile method for the production of well-defined block copolymer micelles in solution giving access to numerous tailor-made one-, two- and three-dimensional assemblies with controlled length, length distribution, shape, and corona chemistries. One special example of micelles derived by CDSA are the so-called patchy micelles, which possess a corona made of alternating nanometer-sized compartments. These patchy micelles show superior interfacial activity making them excellent candidates for the use as compatibilizers or metal (oxide) nanoparticle templates.
  • 908
  • 23 Jun 2021
Topic Review
Covalent Triazine-Based Frameworks for Photocatalytic Hydrogen Generation
The conversion of solar energy and water to hydrogen via semiconductor photocatalysts is one of the efficient strategies to mitigate the energy and environmental crisis. Conjugated polymeric photocatalysts have advantages over their inorganic counterparts. Their molecular structures, band structures, and electronic properties are easily tunable through molecular engineering to extend their spectral response ranges, improve their quantum efficiencies, and enhance their hydrogen evolution rates. In particular, covalent triazine-based frameworks (CTFs) present a strong potential for solar-driven hydrogen generation due to their large continuous π-conjugated structure, high thermal and chemical stability, and efficient charge transfer and separation capability. 
  • 907
  • 14 Apr 2022
Topic Review
Microplastics Invading Human Organs and Bodily Fluids Systems
Microplastics (MPs), small plastic particles resulting from the degradation of larger plastic items and from primary sources such as textiles, engineered plastic pellets, etc., have become a ubiquitous environmental pollutant. As their prevalence in the natural environment grows, concerns about their potential impacts on human health have escalated.
  • 906
  • 20 Nov 2023
Topic Review
Functionalized Chitosan Nanomaterials
Quorum sensing (QS) is the mechanism by which the microbial colonies in a biofilm modulate and intercept communication without direct interaction. Hence, the eradication of biofilms through hindering this communication will lead to the successful management of drug resistance and may be a novel target for antimicrobial chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively charged amino groups, which interact with anionic moieties on microbial species, causing enhanced membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial mucus membranes and release their drug load in a constant release manner. As the success in therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing (QS).
  • 896
  • 10 Aug 2021
Topic Review
Applying Pickering Emulsions to Food
The proper mix of nanocellulose to a dispersion of polar and nonpolar liquids creates emulsions stabilized by finely divided solids (instead of tensoactive chemicals) named Pickering emulsions. These mixtures can be engineered to develop new food products with innovative functions, potentially more eco-friendly characteristics, and reduced risks to consumers. Although cellulose-based Pickering emulsion preparation is an exciting approach to creating new food products, there are many legal, technical, environmental, and economic gaps to be filled through research.
  • 892
  • 12 Oct 2023
Topic Review
Mechanisms of Temperature-Responsive Polymer Brush Coatings
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). Despite progress in the development of such interesting materials, there are still some issues that need to be resolved, such as biocompatibility, high efficiency, selectivity of the action, stability, long-term and multiple-use, and the temperature of the transition close to physiological temperatures (appropriate transition temperature). The mechanisms of their temperature-induced reactions are one of the most crucial elements that affect the characteristics of temperature-sensitive grafted brush coatings. The TRPBCs exhibit the response to temperature governed by different mechanisms attributed to intermolecular interactions of the macromolecular chains between themselves and with the environment. The mechanism responsible for the temperature-dependent properties of polymer brushes is strongly dependent on the chemical nature of the macromolecular chains.
  • 886
  • 20 Oct 2022
Topic Review
Printable Hydrogels
The hydrogel is a hydrophilic scaffold composed of covalent and non-covalent polymeric chains bonds, providing a 3D shape environment similar to the native extra-cellular matrix (ECM).
  • 874
  • 18 Mar 2021
Topic Review
Applications of Hydrogels as Wound Dressings
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. 
  • 873
  • 12 Mar 2024
Topic Review
Polyelectrolyte–Dye Interactions
Polyelectrolytes are polymers with repeating units of ionizable groups coupled with counterions. Recently, polyelectrolytes have drawn significant attention as highly promising macromolecular materials with potential for applications in almost every sector of our daily lives. Dyes are another class of chemical compounds that can interact with substrates and subsequently impart color through the selective absorption of electromagnetic radiation in the visible range.
  • 853
  • 07 Feb 2022
Topic Review
Poly(lactic acid) and Its Blends for Packaging Application
Biopolymers obtained from renewable resources are an interesting alternative to conventional polymers obtained from fossil resources, as they are sustainable and environmentally friendly. Poly(lactic acid) (PLA) is a biodegradable aliphatic polyester produced from 100% renewable plant resources and plays a key role in the biopolymer market, and is experiencing ever-increasing use worldwide.
  • 851
  • 30 Nov 2023
Topic Review
Polyvinylidene Fluoride-Graphene Oxide Membranes
In this study, polyvinylidene fluoride (PVDF)-graphene oxide (GO) membranes were obtained by employing triethyl phosphate (TEP) as a solvent. GO nanosheets were prepared and characterized in terms of scanning and transmission electron microscopy (SEM and TEM, respectively), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), chemical analysis and inductively coupled plasma mass spectroscopy (ICP).
  • 849
  • 18 May 2021
Topic Review
Pore-Selective Functionalization of HCP Films
Recent developments in the field of the breath figure (BF) method leading to pore-selective functionalization of honeycomb-patterned (HCP) films attracted great interest. The pore-selective functionalization of the HCP film gives unique properties to the film which can be used for specific applications like protein recognition, catalysis, selective cell culturing, and drug delivery.
  • 847
  • 06 Apr 2022
Topic Review
Development and Production of Nano-Based Polymeric Membranes
There has been increasing interest in the study and development of nanoparticle-embedded polymeric materials and their applications to special membranes. Nanoparticle-embedded polymeric materials have been observed to have a desirable compatibility with commonly used membrane matrices, a wide range of functionalities, and tunable physicochemical properties. The development of nanoparticle-embedded polymeric materials has shown great potential to overcome the longstanding challenges faced by the membrane separation industry. One major challenge that has been a bottleneck to the progress and use of membranes is the balance between the selectivity and the permeability of the membranes. 
  • 846
  • 16 Jun 2023
Topic Review
Advances in Conducting Polymers for Healthcare Monitoring
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. 
  • 833
  • 07 Feb 2024
Topic Review
Surface Treatments of PEEK for Osseointegration to Bone
Polymers, in general, and Poly (Ether-Ether-Ketone) (PEEK) have emerged as potential alternatives to conventional osseous implant biomaterials. Due to its distinct advantages over metallic implants, PEEK has been gaining increasing attention as a prime candidate for orthopaedic and dental implants. Although a myriad of permutations and combinations of different surface treatments are employed to alter the surface topography of PEEK, for the sake of simplicity, these treatments have been classified into the following categories: physical treatment, chemical treatment, surface coating, and composite preparation, with the first surface treatment in the combination determining the classification. Though these terms are arbitrary and could lead to considerable overlap, physical and chemical treatments can be grouped into a subtractive form of surface modification while surface coating can be regarded as an additive form.
  • 831
  • 15 Mar 2023
Topic Review
Categories of Quantum Photoinitiators
The use of novel photoinitiators (PIs) for free-radical polymerization has attracted significant attention from the scientific community. Quantum PIs, quantum-confined nanoscale crystals with semiconductor properties, have received interest for use in photopolymerization, due to their precisely tunable properties as a function of structural and surface engineering.
  • 807
  • 20 Aug 2021
Topic Review
Synthetic Compartments for Biomedical Applications
Nano- and micrometer-sized compartments composed of synthetic polymers are designed to mimic spatial and temporal divisions found in nature. Self-assembly of polymers into compartments such as polymersomes, giant unilamellar vesicles (GUVs), layer-by-layer (LbL) capsules, capsosomes, or polyion complex vesicles (PICsomes) allows for the separation of defined environments from the exterior. These compartments can be further engineered through the incorporation of (bio)molecules within the lumen or into the membrane, while the membrane can be decorated with functional moieties to produce catalytic compartments with defined structures and functions. Nanometer-sized compartments are used for imaging, theranostic, and therapeutic applications as a more mechanically stable alternative to liposomes, and through the encapsulation of catalytic molecules, i.e., enzymes, catalytic compartments can localize and act in vivo. On the micrometer scale, such biohybrid systems are used to encapsulate model proteins and form multicompartmentalized structures through the combination of multiple compartments, reaching closer to the creation of artificial organelles and cells.
  • 807
  • 02 Jun 2022
  • Page
  • of
  • 23
Academic Video Service