Topic Review
ECM decellularization methods
The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. We recently published an overview of the most common methods used to obtain the dECM from specific tissues[1]. Here we provide a summary from that report as a helpful guide for future research development.
  • 3.0K
  • 25 Aug 2020
Topic Review
Wearable Stretch Sensors
Wearable sensors are beneficial for continuous health monitoring, movement analysis, rehabilitation, evaluation of human performance. Wearable stretch sensors are increasingly being used for human movement monitoring. The content presented provides a review of wearable stretch sensors as well the design, development and validation of a wearable soft-robotic-stretch sensors. 
  • 3.0K
  • 25 Feb 2021
Topic Review
Carbon Nanotube Field-Effect Transistor
Carbon nanotubes (CNTs) are seamless nanotubes made of single or multiple layers of graphene sheets rolled around a central axis with the advantages of being lightweight and having a perfect hexagonal connection structure.
  • 3.0K
  • 29 Mar 2021
Topic Review
Bone Structure, Its Properties, and Bone Healing Mechanism
Bones are categorized into two major groups, namely cortical bones, and cancellous bones. Cortical bones are compact bones and are responsible for providing mechanical strength, structural rigidity, and movement. They account for 80% of the mass of the bones in the human body. Cancellous bones, also known as trabecular bones, are soft, spongy bones and are responsible for providing structural support to the cortical bones, flexibility, and reduction in weight. 
  • 2.9K
  • 21 Apr 2022
Topic Review
Microalgae Water Bioremediation
The need to reduce costs associated with the production of microalgae biomass has encouraged the coupling of process with wastewater treatment. Emerging pollutants in municipal, industrial, and agricultural wastewaters, ranging from pharmaceuticals to metals, endanger public health and natural resources. The use of microalgae has, in fact, been shown to be an efficient method in water-treatment processes and presents several advantages, such as carbon sequestration, and an opportunity to develop innovative bioproducts with applications to several industries. Using a bibliometric analysis software, SciMAT, a mapping of the research field was performed, analyzing the articles produced between 1981 and 2018, aiming to identifying the hot topics and trends studied until now. The application of microalgae on water bioremediation is an evolving research field that currently focuses on developing efficient and cost-effective treatments methods that also enable the production of add-value products, leading to a blue and circular economy.
  • 2.9K
  • 29 Oct 2020
Topic Review
Epoxides Cycloaddition for CO2 Utilization
In the present review (10.3390/pr8050548), CO2 cycloaddition can be seen as a reasonably competent alternative to CO2 transformation, offsetting the high value-added nature by extending material use defer CO2 back to the atmosphere when compared to commodities and fuels such as urea, methanol, and methane.
  • 2.9K
  • 27 Aug 2020
Topic Review
Sensors for Hydrogen Peroxide Detection
 Hydrogen peroxide (H2O2) is a key molecule in numerous physiological, industrial, and environmental processes. H2O2 is monitored using various methods like colorimetry, luminescence, fluorescence, and electrochemical methods. Here, we aim to provide a comprehensive review of solid state sensors to monitor H2O2. The review covers three categories of sensors: chemiresistive, conductometric, and field effect transistors. A brief description of the sensing mechanisms of these sensors has been provided. All three sensor types are evaluated based on the sensing parameters like sensitivity, limit of detection, measuring range and response time. We highlight those sensors which have advanced the field by using innovative materials or sensor fabrication techniques. Finally, we discuss the limitations of current solid state sensors and the future directions for research and development in this exciting area. 
  • 2.8K
  • 30 Jan 2021
Topic Review
Traditional Algal Transformation Techniques
Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements.
  • 2.7K
  • 12 Apr 2021
Topic Review
Acrylic Bone Cements
Acrylic bone cements (ABC) are widely used in orthopedics for joint fixation, antibiotic release, and bone defect filling, among others. Most of the commercial ABCs available today consist of two components, one solid, based mainly on poly(methyl methacrylate) (PMMA), and one liquid, based on methyl methacrylate (MMA), which are mixed and, through the polymerization reaction of the monomer, transformed into a hardened cement paste. 
  • 2.7K
  • 22 Dec 2020
Topic Review
3D Printing in Organ-on-a-Chip Platforms
Three-dimensional (3D) in vitro models, such as organ-on-a-chip platforms, are an emerging and effective technology that allows the replication of the function of tissues and organs, bridging the gap amid the conventional models based on planar cell cultures or animals and the complex human system. Hence, they have been increasingly used for biomedical research, such as drug discovery and personalized healthcare. A promising strategy for their fabrication is 3D printing, a layer-by-layer fabrication process that allows the construction of complex 3D structures.
  • 2.6K
  • 21 May 2021
Topic Review
3D Braiding Technology
3D braiding technologies enable the production of structures with complex geometry, which are often used for lightweight solutions, for example in automotive engineering. In addition, medical technology offers wide-ranging applications for 3D braiding technology. 3D braided structures are defined as those with yarns that intersect in all three spatial directions. 3D braiding processes allow the fiber orientation to be easily influenced, thus ensuring high strength and stiffness with reduced mass.
  • 2.6K
  • 25 Aug 2021
Topic Review
Non-Enzymatic Electrochemical Sensing
Simultaneous detection of analytes that together exist in biological organisms necessitates the development of effective and efficient non enzymatic electrodes in sensing. In this regard, development of sensing elements for detecting glucose and hydrogen peroxide (H2O2) is significant. The non-enzymatic sensing is more economical and has longer lifetime than enzymatic electrochemical sensing, but it has several drawbacks such as high working potential, slow electrode kinetics, poisoning from intermediate species and weak sensing parameters. Here is a comprehensive overview of the recent developments in non-enzymatic glucose and H2O2 (NEGH) sensing, by focusing mainly on sensing performance, electro catalytic mechanism, morphology and design of electrode materials. A comparison of glucose and H2O2 sensing parameters using same electrode materials is outlined to predict the efficient sensing performances of advanced nanomaterials with metal/metal oxides and hybrid metallic nanocomposites.
  • 2.3K
  • 24 Nov 2020
Topic Review
Downstream Processing of Virus Filter
Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge.
  • 2.2K
  • 24 Apr 2022
Topic Review
Transducer Technologies for Biosensors and Their Wearable Applications
Biosensors refer to the collaboration of receptors that recognize target analytes and transducers that translate this recognition into a detectable signal. Biological molecules such as enzymes, nucleic acids, antibodies, or their synthetic analogues can serve as bio-receptors to bind the analyte of interest. To form a biosensor device that detects or measures the biological events or changes, the targeted matching of the bio-receptor and the analyte should be evaluated quantitatively, making the transducers indispensable components of a biosensor. Availability of various bio-receptors, transducers, and possible combinations of both components constitute various ways to classify biosensors. Compared to conventional sensors based on rigid semiconductors, metals, and ceramics, elastomers are advantageous since they exhibit the highest level of strain behavior for wearable applications. 
  • 2.2K
  • 09 Jun 2022
Topic Review
Machine-Learning-Based Disease Diagnosis
Machine learning (ML), an area of artificial intelligence (AI), enables researchers, physicians, and patients to solve some of these issues. Many researchers and practitioners illustrate the promise of machine-learning-based disease diagnosis (MLBDD), which is inexpensive and time-efficient. Traditional diagnosis processes are costly, time-consuming, and often require human intervention. While the individual’s ability restricts traditional diagnosis techniques, ML-based systems have no such limitations, and machines do not get exhausted as humans do. As a result, a method to diagnose disease with outnumbered patients’ unexpected presence in health care may be developed. To create MLBDD systems, health care data such as images (i.e., X-ray, MRI) and tabular data (i.e., patients’ conditions, age, and gender) are employed.
  • 2.1K
  • 28 Mar 2022
Topic Review
Spinal-Deformities and Advancement in Corrective-Orthoses
Spinal deformity is an abnormality in the spinal curves and can seriously affect the activities of daily life. The conventional way to treat spinal deformities, such as scoliosis, kyphosis, and spondylolisthesis, is to use spinal orthoses (braces). Braces have been used for centuries to apply corrective forces to the spine to treat spinal deformities or to stabilize the spine during postoperative rehabilitation. Braces have not modernized with advancements in technology, and very few braces are equipped with smart sensory design and active actuation. There is a need to enable the orthotists, ergonomics practitioners, and developers to incorporate new technologies into the passive field of bracing. 
  • 2.1K
  • 30 Jan 2021
Topic Review
Iron-Based Catalytically Active Complexes
Iron complexes are particularly interesting as catalyst systems over the other transition metals (including noble metals) due to iron’s high natural abundance and mediation in important biological processes, therefore making them non-toxic, cost-effective, and biocompatible. Both homogeneous and heterogeneous catalysis mediated by iron as a transition metal have found applications in many industries, including oxidation, C-C bond formation, hydrocarboxylation and dehydration, hydrogenation and reduction reactions of low molecular weight molecules. These processes provided substrates for industrial-scale use, e.g., switchable materials, sustainable and scalable energy storage technologies, drugs for the treatment of cancer, and high molecular weight polymer materials with a predetermined structure through controlled radical polymerization techniques.
  • 2.1K
  • 29 Dec 2020
Topic Review
Nitrogen removal in bioelectrochemical systems
Nitrogenous compounds attract great attention because of their environmental impact and harmfulness to the health of human beings. Various biological technologies have been developed to reduce the environmental risks of nitrogenous pollutants. Bioelectrochemical systems (BESs) are considered to be a novel biological technology for removing nitrogenous contaminants by virtue of their advantages, such as low energy requirement and capacity for treating wastewaters with a low C/N ratio. Therefore, increasing attention has been given to carry out biological processes related to nitrogen removal with the aid of cathodic biofilms in BESs. Prior studies have evaluated the feasibility of conventional biological processes including nitrification, denitrification, and anaerobic ammonia oxidation (anammox), separately or combined together, to remove nitrogenous compounds with the help of BESs. The present review summarizes the progress of developments in BESs in terms of the biological process, cathodic biofilm, and affecting factors for efficient nitrogen removal.
  • 2.1K
  • 27 Jul 2020
Topic Review
Human Emotion Recognition
Automated emotion recognition (AEE) is important issue in the various field of activities, which uses human emotional reaction as a signal for marketing, technical equipment or human-robot interaction. Paper analyzes vast layer of scientific research and technical papers for sensor use analysis, where various methods implemented or researched. Paper cover few classes of sensors, using contactless methods, contact and skin-penetrating electrodes with for human emotion detection and measurement of their intensity. Result of performed analysis in this paper presented applicable methods for each type of emotions or their intensity and proposed their classification. Provided classification of emotion sensors revealed area of application and expected outcome from each method as well as noticed limitation of them. This paper should be interested for researchers, needed to use of human emotion evaluation and analysis, when there is a need to choose proper method for their purposes or find alternative decision.
  • 2.0K
  • 27 Jan 2021
Topic Review
Advances in Finger Prosthetic Mechanisms
Approximately 70% of the upper extremity amputations refers to partial hand loss with the involvement of one or more fingers. Historically, this type of limb amputation has been addressed adopting simple opposition designs that use the movement of the residual digit for grasping against a fixed device. Nevertheless, in the last few years, technological advances, and the introduction of modern computer-aided tools for the synthesis and functional design of mechanisms have led to the development of smaller, more robust systems that are constantly improving body-powered and electrically-powered prototypes.
  • 2.0K
  • 26 Oct 2020
  • Page
  • of
  • 27
ScholarVision Creations