You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Classification of Biomaterials Used in Delivery Systems
A delivery system generally utilizes biomaterials as carriers to embed, deliver, and release bioactive substances at the desired site under controlled conditions. Among them, inorganic and organic biomaterials are popular in delivery system-based regenerative medicine.
  • 603
  • 23 Aug 2022
Topic Review
Intracellular Enzyme-Instructed Self-Assembly of Peptides
Despite the remarkable significance and encouraging breakthroughs of intracellular enzyme-instructed self-assembly of peptides (IEISAP) in disease diagnosis and treatment, a comprehensive review that focuses on this topic is still desirable.
  • 597
  • 18 Oct 2022
Topic Review
Main Properties Impacting Bioactivity of Calcium Phosphate Coatings
The bioceramic coating properties are used to create a strong bonding between the bone implants and the surrounding bone tissue. They provide a fast response after implantation and increase the lifespan of the implant in the body environment. Key physicochemical properties of calcium phosphate coatings and their impact on the bioactivity and performance of bone implants in a physiological environment are presented herein.
  • 593
  • 03 Jul 2023
Topic Review
Additive Manufacturing Applications in Biosensors Technologies
Three-dimensional (3D) printing technology, also known as additive manufacturing (AM), has emerged as an attractive state-of-the-art tool for precisely fabricating functional materials with complex geometries, championing several advancements in tissue engineering, regenerative medicine, and therapeutics.
  • 591
  • 02 Feb 2024
Topic Review
DNA-Guided Metallization of Nanomaterials and Their Biomedical Applications
Precise control of the structure of metallic nanomaterials is critical for the advancement of nanobiotechnology. As DNA (deoxyribonucleic acid) can readily modify various moieties, such as sulfhydryl, carboxyl, and amino groups, using DNA as a directing ligand to modulate the morphology of nanomaterials is a promising strategy. 
  • 590
  • 10 May 2023
Topic Review
Anomalous Properties of Cyclodextrins
Cyclodextrins (CDs) are cyclic oligosaccharides that emerged as industrial excipients in the early 1970s and are currently found in at least 130 marketed pharmaceutical products, in addition to numerous other consumer products. Although CDs have been the subject of close to 100,000 publications since their discovery, and although their structure and properties appear to be trivial, CDs are constantly surprising investigators by their unique physicochemical properties. In aqueous solutions, CDs are solubilizing complexing agents of poorly soluble drugs while they can also act as organic cosolvents like ethanol. CDs and their complexes self-assemble in aqueous solutions to form both nano- and microparticles. The nanoparticles have diameters that are well below the wavelength of visible light; thus, the solutions appear to be clear. However, the nanoparticles can result in erroneous conclusions and misinterpretations of experimental results. CDs can act as penetration enhancers, increasing drug permeation through lipophilic membranes, but they do so without affecting the membrane barrier.
  • 586
  • 27 Mar 2023
Topic Review
Application of Microfluidic Systems for Neural Studies
Whereas the axons of the peripheral nervous system (PNS) spontaneously regenerate after an injury, the occurring regeneration is rarely successful because axons are usually directed by inappropriate cues. Therefore, finding successful ways to guide neurite outgrowth, in vitro, is essential for neurogenesis. Microfluidic systems reflect more appropriately the in vivo environment of cells in tissues such as the normal fluid flow within the body, consistent nutrient delivery, effective waste removal, and mechanical stimulation due to fluid shear forces. At the same time, it has been well reported that topography affects neuronal outgrowth, orientation, and differentiation.
  • 583
  • 07 Aug 2023
Topic Review
CaP Containing Biopolymer Composites in Bone Tissue Engineering
Biocompatible ceramics are extremely important in bioengineering, and very useful in many biomedical or orthopedic applications because of their positive interactions with human tissues. There have been enormous efforts to develop bioceramic particles that cost-effectively meet high standards of quality. Among the numerous bioceramics, calcium phosphates are the most suitable since the main inorganic compound in human bones is hydroxyapatite, a specific phase of the calcium phosphates (CaPs). The CaPs can be applied as bone substitutes, types of cement, drug carriers, implants, or coatings. 
  • 580
  • 18 May 2023
Topic Review
The Application of Dissolving Microneedles in Biomedicine
Microneedle technology has been widely used for the transdermal delivery of substances, showing improvements in drug delivery effects with the advantages of minimally invasive, painless, and convenient operation. With the development of nano- and electrochemical technology, different types of microneedles are increasingly being used in other biomedical fields. Dissolving microneedles have achieved remarkable results in the fields of dermatological treatment, disease diagnosis and monitoring, and vaccine delivery, and they have a wide range of application prospects in various biomedical fields, showing their great potential as a form of clinical treatment. 
  • 578
  • 25 Oct 2023
Topic Review
Functionalization of Bioresorbable Nanomembranes and Nanoparticles in Biomedicine
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity.
  • 576
  • 03 Jul 2023
Topic Review
Stimuli-Responsive Nucleic Acids Delivery System in Gene Therapy
Compared with traditional drugs, gene therapy can directly correct the disease-related genes at the genetic level, which guarantees a sustained effect. However, nucleic acids are unstable in circulation and have short half-lives. They cannot pass through biological membranes due to their high molecular weight and massive negative charges. To facilitate the delivery of nucleic acids, it is crucial to develop a suitable delivery strategy. The emergence of stimuli-responsive delivery systems has made it possible to control the release of nucleic acids in an intelligent manner and to precisely guide the therapeutic nucleic acids to the target site. Considering the unique properties of stimuli-responsive delivery systems, various stimuli-responsive nanocarriers have been developed. 
  • 574
  • 19 May 2023
Topic Review
Properties of Pectic Polysaccharides
Pectin consists of many active functional groups of polysaccharides, enabling them to have much more excellent modification properties than other biopolymers. Pectin is a hydrophilic natural polymer that can absorb or retain much water and exhibit swelling properties. Hydrogels and composite materials can be formed by crosslinking and other techniques, and the matrix structure can be incorporated with various bioactive compounds. Pectin-based smart composites with physical-sensitive (light, temperature, electricity), chemical-sensitive (pH, redox, glucose), and biological-sensitive (enzymes) properties are suitable in the delivery system of bioactive compounds in addition to their suitable biodegradable and biocompatible properties. Due to its broad availability, pectin has become a prominent branch of the research and development of nature-based biomedical and healthcare areas.
  • 574
  • 19 Dec 2023
Topic Review
Natural Polymers in Heart Valve Tissue Engineering
The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment.
  • 572
  • 21 Jul 2023
Topic Review
Magnesium Bioabsorbable Materials Based on Reinforced Polymeric Matrices
Improvements in Tissue Engineering and Regenerative Medicine (TERM)–type technologies have allowed the development of specific materials that, together with a better understanding of bone tissue structure, have provided new pathways to obtain biomaterials for bone tissue regeneration.
  • 564
  • 27 Dec 2023
Topic Review
Scaffold-Based 3D Cell Culture for Spermatogonial Stem Cells
Male germline stem cells (mGSCs), also known as spermatogonial stem cells (SSCs), are the fundamental seed cells of male animal reproductive physiology. However, environmental influences, drugs, and harmful substances often pose challenges to SSCs, such as population reduction and quality decline. With advancements in bioengineering technology and biomaterial technology, an increasing number of novel cell culture methods and techniques have been employed for studying the proliferation and differentiation of SSCs in vitro.
  • 561
  • 23 Feb 2024
Topic Review
Nature-Inspired Chiral Structures
Diverse chiral structures observed in nature find applications across various domains, including engineering, chemistry, and medicine. Particularly notable is the optical activity inherent in chiral structures, which has emerged prominently in the field of optics. This phenomenon has led to a wide range of applications, encompassing optical components, catalysts, sensors, and therapeutic interventions.
  • 559
  • 16 Nov 2023
Topic Review
Displacement-Based Approaches for Protein-Bound Uremic Toxins Removal
End-stage renal disease (ESRD) patients rely on renal replacement therapies to survive. Hemodialysis (HD), the most widely applied treatment, is responsible for the removal of excess fluid and uremic toxins (UTs) from blood, particularly those with low molecular weight (MW < 500 Da). The development of high-flux membranes and more efficient treatment modes, such as hemodiafiltration, have resulted in improved removal rates of UTs in the middle molecular weight range. However, the concentrations of protein-bound uremic toxins (PBUTs) remain essentially untouched. Due to the high binding affinity to large proteins, such as albumin, PBUTs form large complexes (MW > 66 kDa) which are not removed during HD and their accumulation has been strongly associated with the increased morbidity and mortality of patients with ESRD. 
  • 558
  • 22 May 2023
Topic Review
Electric Double Layer Based Epidermal Electronics for Healthcare
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. Especially, Electric Double Layer (EDL)-based epidermal sensors show great potential in the application of wearable electronics to detect biological signals due to their high sensitivity, fast response, and excellent stability. The advantages can be attributed to the biocompatibility of the materials, the flexibility of the devices, and the large capacitance due to the EDL effect. 
  • 555
  • 13 Sep 2023
Topic Review
Classification of Bio-Magnetic Nanoparticles
Bio-magnetic nanoparticles (BMNPs) was introduced, describing a unique combination of physio-chemical properties of magnetic nanoparticles with their entirely biocompatible nature, which makes them particularly effective in various biomedical applications.
  • 549
  • 11 Jul 2023
Topic Review
Electrochemically Synthesized Molecularly Imprinted Polymers Sensors
Early-stage detection and diagnosis of diseases is essential to the prompt commencement of treatment regimens, curbing the spread of the disease, and improving human health. Thus, the accurate detection of disease biomarkers through the development of robust, sensitive, and selective diagnostic tools has remained cutting-edge scientific research. Due to their merits of being selective, stable, simple, and having a low preparation cost, molecularly imprinted polymers (MIPs) are increasingly becoming artificial substitutes for natural receptors in the design of state-of-the-art sensing devices.
  • 547
  • 26 Feb 2024
  • Page
  • of
  • 32
Academic Video Service