You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Echelle Grating Spectroscopic Technology Application
Echelle grating provides high spectral resolving power and diffraction efficiency in a broadband wavelength range by the Littrow mode. The spectrometer with the cross-dispersed echelle scheme has seen remarkable growth in recent decades. Rather than the conventional approach with common blazed grating, the cross-dispersed echelle scheme achieves the two-dimensional spatial distribution of the spectrum by one exposure without scanning in the broadband spectral range. It is the fastest and most sensitive spectroscopic technology as of now, and it has been extensively applied in commercial and astronomical spectrometers.
  • 1.3K
  • 10 Nov 2022
Topic Review
Multi-Anvil Press
The multi-anvil press is a type of device designed to produce extremely high pressures in a relatively small volume. This type of anvil press is used in materials science and geology for the synthesis and study of solid phase materials under extreme pressure, as well as for the industrial production of valuable minerals, especially synthetic diamonds. These instruments allow the simultaneous compression and heating of millimeter size solid phase samples such as rocks, minerals, ceramics, glasses, composite materials, or metal alloys and are capable of reaching pressures above 25 GPa and temperatures exceeding 2500 °C. This allows mineral physicists and petrologists studying the Earth’s interior to experimentally reproduce the conditions found throughout the lithosphere and upper mantle, to a depth of 700 km (citation, figure 1,2). Diamond anvil cells and light-gas guns can access even higher pressures, but the multi-anvil apparatus can accommodate much larger samples, which simplifies sample preparation and improves the precision of measurements and the stability of the experimental parameters (citation needed).
  • 1.2K
  • 17 Nov 2022
Topic Review
Enumeration of Brettanomyces in Wine Using Impedance
Brettanomyces bruxellensis is a wine spoilage concern in wineries around the world. In order to maintain wine quality during storage and ageing, it is imperative to control and monitor this yeast. Being a fastidious slow growing yeast, which requires 5 to 14 days of incubation for visible growth in agar plates, it is difficult to detect growth (colonies) by conventional agar plate count method. Yeast enumeration by impedance was investigated because previous research using other microorganisms has shown that it is potentially faster than plate counting. The relationship between plate counting and impedance detection times was investigated for Brettanomyces inoculated in red wine samples. A linear relationship between log plate count concentrations and impedance detection times was found. Incubation time was reduced from 120 h down to 0.9 and 57.7 h for samples with 6.7 × 10E7 and 1.8 × 10E2 cfu/mL, respectively, using the ‘indirect’ impedance method. The ‘indirect’ impedance method has the potential to be used by the wine industry to control and monitor the Brettanomyces numbers in wines.
  • 1.2K
  • 17 Mar 2022
Topic Review
Astronomical Interferometer
An astronomical interferometer is an array of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, nebulas and galaxies by means of interferometry. The advantage of this technique is that it can theoretically produce images with the angular resolution of a huge telescope with an aperture equal to the separation between the component telescopes. The main drawback is that it does not collect as much light as the complete instrument's mirror. Thus it is mainly useful for fine resolution of more luminous astronomical objects, such as close binary stars. Another drawback is that the maximum angular size of a detectable emission source is limited by the minimum gap between detectors in the collector array. Interferometry is most widely used in radio astronomy, in which signals from separate radio telescopes are combined. A mathematical signal processing technique called aperture synthesis is used to combine the separate signals to create high-resolution images. In Very Long Baseline Interferometry (VLBI) radio telescopes separated by thousands of kilometers are combined to form a radio interferometer with a resolution which would be given by a hypothetical single dish with an aperture thousands of kilometers in diameter. At the shorter wavelengths used in infrared astronomy and optical astronomy it is more difficult to combine the light from separate telescopes, because the light must be kept coherent within a fraction of a wavelength over long optical paths, requiring very precise optics. Practical infrared and optical astronomical interferometers have only recently been developed, and are at the cutting edge of astronomical research. At optical wavelengths, aperture synthesis allows the atmospheric seeing resolution limit to be overcome, allowing the angular resolution to reach the diffraction limit of the optics. Astronomical interferometers can produce higher resolution astronomical images than any other type of telescope. At radio wavelengths, image resolutions of a few micro-arcseconds have been obtained, and image resolutions of a fractional milliarcsecond have been achieved at visible and infrared wavelengths. One simple layout of an astronomical interferometer is a parabolic arrangement of mirror pieces, giving a partially complete reflecting telescope but with a "sparse" or "dilute" aperture. In fact the parabolic arrangement of the mirrors is not important, as long as the optical path lengths from the astronomical object to the beam combiner (focus) are the same as would be given by the complete mirror case. Instead, most existing arrays use a planar geometry, and Labeyrie's hypertelescope will use a spherical geometry.
  • 1.2K
  • 09 Nov 2022
Topic Review
Symmetric Silicon MEMS Gyroscope Mode-Matching Technologies
 The symmetric "micro-electromechanical systems” (MEMS) gyroscope is a typical representative of inertial navigation sensors in recent years. It is different from the traditional mechanical rotor gyroscope in that it structurally discards the high-speed rotor and other moving parts to extend the service life and significantly improve accuracy. The highest accuracy is achieved when the ideal mode-matching state is realized. Due to the processing limitation, this index cannot be achieved, and can be only explored to approach this index continuously.
  • 1.2K
  • 08 Oct 2022
Topic Review
Microprobe System for Coordinate Metrology
A coordinate measuring machine (CMM) is a measuring instrument that can measure three-dimensional (3D) shapes of an object, including a probing system to detect an object’s surface, a positioning stage system to move either the probing system or the object, length scales to determine the coordinate of detected points by the probing system, as well as software to control the entire measurement.  Micro-coordinate measuring machines (micro-CMMs) for measuring microcomponents require a probe system with a probe tip diameter of several tens to several hundreds of micrometers. Scale effects work for such a small probe tip, i.e., the probe tip tends to stick on the measurement surface via surface adhesion forces. These surface adhesion forces significantly deteriorate probing resolution or repeatability. 
  • 1.2K
  • 30 Jan 2022
Topic Review
Effect of Sanitizing Treatments on Respirator Filtration Performance
Disposable respirator masks with an accepted performance rating are seriously compromised from an exposure to saturated alcoholic vapours, can tolerate a one-off spray treatment with an alcoholic solution and retain their attested protection under the influence of alcoholic vapours from the use of hand sanitizer or spray sanitizer.
  • 1.2K
  • 10 Jan 2022
Topic Review
LGAD-Based Silicon Sensors for 4D Detectors
Low-Gain Avalanche Diodes (LGAD) are a class of silicon sensors developed for the fast detection of Minimum Ionizing Particles (MIPs). The development was motivated by the need of resolving piled-up tracks of charged particles emerging from several vertexes originating from the same bunch-crossing in High-Energy Physics (HEP) collider experiments, which, however, are separated not only in space but also in time by a few tens of picoseconds. Built on thin silicon substrates and featuring an internal moderate gain, they provide fast signals for excellent timing performance, which are therefore useful to distinguish the different tracks. Unfortunately, this comes at the price of poor spatial resolution. To overcome this limitation, other families of LGAD-based silicon sensors which can deliver in the same substrate both excellent timing and spatial information are under development.
  • 1.2K
  • 06 Mar 2023
Topic Review
Optimized-AODV For BLE Mesh Networks
The standard Bluetooth Low-Energy mesh networks assume the use of flooding for multihop communications. The flooding approach causes network overheads and delays due to continuous message broadcasting in the absence of a routing mechanism. Among the routing protocols, AODV is one of the most popular and robust routing protocol for wireless ad hoc networks. In this paper, we optimized the AODV protocol for Bluetooth Low-Energy communication to make it more efficient in comparison to the mesh protocol. With the proposed protocol (Optimized AODV (O-AODV)), we were able to achieve lower overheads, end-to-end delay, and average per-hop one-way delay in comparison to the BLE mesh (flooding) protocol and AODV protocol for all three scenarios (linear topology with ten nodes, multipath topology with six and ten nodes). In addition, the proposed protocol exhibited practically constant route requests and route reply setup times. Furthermore, the proposed protocol demonstrated a better Packet Delivery Ratio (PDR) for O-AODV (84%) in comparison to AODV (71%), but lower than the PDR of the mesh (flooding) protocol with 93%. 
  • 1.1K
  • 22 Sep 2021
Topic Review
Sensor Technologies for Human Motion Monitoring
Apart from the early video-based motion capture, the most widely used sensors for human motion capture include the traditional silicon-based sensors and the emerging flexible sensors. The former includes an accelerometer, gyroscope, magnetometer, inertial sensors, and tilt sensors; the latter involves soft strain and pressure sensors based on textile or polymer materials.
  • 1.1K
  • 17 Nov 2023
Topic Review
Bullwhip Effect in Supply Chain
The bullwhip effect results from inefficiencies in the supply chain; in perishable products, the inefficiencies are quality in the supply chain and product waste. Update the demand, the level of deterioration of the product, and the number of intermediaries is the causes of the bullwhip effect most investigated.
  • 1.1K
  • 05 Aug 2021
Topic Review
Micro-Nanotechnology Sensors for Biomedical and Environmental Challenges
Micro- and nanotechnology-enabled sensors have made remarkable advancements in the fields of biomedicine and the environment, enabling the sensitive and selective detection and quantification of diverse analytes. In biomedicine, these sensors have facilitated disease diagnosis, drug discovery, and point-of-care devices. In environmental monitoring, they have played a crucial role in assessing air, water, and soil quality, as well as ensured food safety.
  • 1.1K
  • 13 Jun 2023
Topic Review
Detection of Anomalies Using Acoustic Emission When Welding
Welding inspection is a critical process that can be severely time-consuming, resulting in productivity delays, especially when destructive or invasive processes are required. With non-destructive approaches, the actual service part can be inspected in both a speedy and non-invasive manner. A multi-spectral approach is used to give more confidence and information related to the anomaly of interest. This system is very portable and essentially could be used in most joining setup situations.
  • 1.0K
  • 23 Aug 2023
Topic Review
Theoretical Background of SMS Sensors
SMS (single mode–multi mode–single mode) sensors' structures are constituted by splicing a multi-mode-no-core fiber (MMF-NC, also known as coreless)-defined segment to two single-mode fiber pigtails.
  • 949
  • 07 Jul 2023
Topic Review
Architecture-Level Optimization on Silicon Photomultipliers
Sensors based on single-photon avalanche diodes (SPADs) are nowadays employed in a wide variety of single-photon counting and fast-timing applications, e.g., high-energy physics; time of flight (TOF) ranging and 3D imaging; Raman spectroscopy; and bio-medicine, including fluorescence-lifetime imaging microscopy and positron emission tomography (PET), to name a few. SiPMs are the most common sensors in PET applications, where they detect the light produced by the interaction between gamma photons and scintillator crystals. 
  • 933
  • 07 Feb 2022
Topic Review
Plate Reader
Plate readers, also known as microplate readers or microplate photometers, are instruments which are used to detect biological, chemical or physical events of samples in microtiter plates. They are widely used in research, drug discovery, bioassay validation, quality control and manufacturing processes in the pharmaceutical and biotechnological industry and academic organizations. Sample reactions can be assayed in 1-1536 well format microtiter plates. The most common microplate format used in academic research laboratories or clinical diagnostic laboratories is 96-well (8 by 12 matrix) with a typical reaction volume between 100 and 200 µL per well. Higher density microplates (384- or 1536-well microplates) are typically used for screening applications, when throughput (number of samples per day processed) and assay cost per sample become critical parameters, with a typical assay volume between 5 and 50 µL per well. Common detection modes for microplate assays are absorbance, fluorescence intensity, luminescence, time-resolved fluorescence, and fluorescence polarization.
  • 916
  • 28 Oct 2022
Topic Review
Atom Chips for Absolute Gravity Sensors
As a powerful tool in scientific research and industrial technologies, the cold atom absolute gravity sensor (CAGS) based on cold atom interferometry has been proven to be the most promising new generation high-precision absolute gravity sensor. However, large size, heavy weight, and high–power consumption are still the main restriction factors of CAGS being applied for practical applications on mobile platforms. Combined with cold atom chips, it is possible to drastically reduce the complexity, weight, and size of CAGS.
  • 893
  • 07 Jun 2023
Topic Review
Geomatic Sensors for Heritage Documentation
Geomatic technologies have been widely populated for cultural heritage applications, while the scientific field is quite broad: from underwater to close-range to low-altitude and satellite observations. Geomatic sensors have been used in applications such as close-range approaches with red-green-blue (RGB) cameras and Terrestrial Laser Scanners (TLS), as well as underwater studies. Low-altitude sensors on Unmanned Aerial Vehicles (UAVs) have also been widely used with RGB and multispectral cameras, as well as lidar and thermal sensors.
  • 890
  • 25 Oct 2023
Topic Review
Forward Head Posture and Biofeedback
Forward Head Posture (FHP) is when the head leans forward due to factors such as heavy backpacks or poor computer ergonomics. FHP can lead to neck strain and discomfort as well as potential long-term issues such as arthritis. Treatment options include specialized exercises, orthopedic devices, manual therapy, physical exercises, and visual feedback techniques, along with guidance from specialists in physical medicine and rehabilitation. In this study, a visual feedback-based approach was used to address FHP in female students. 
  • 886
  • 29 Jan 2024
Topic Review
Applications of Optical Sensors in CMOS
CMOS (complementary metal-oxide semiconductor)  technology allows integration with the CMOS readout and control electronics in the same microdevice, featuring high-volume fabrication with high-reproducibility and low-cost. Optical sensors in CMOS are being used extensively in the medical field as a key element in spectroscopy analysis. More specifically, they have been a great advance in the detection of gastrointestinal dysplasia and in the studies of Malaria infection. Furthermore, they have been applied in labs-on-a-chip and, more recently, in organs-on-a-chip devices and X-ray imaging. Optical sensors in CMOS are also promising solutions for other types of applications such as, for example, in photovoltaic (PV) sub-modules to measure the angles of incident light in the PV panels.
  • 878
  • 27 Feb 2024
  • Page
  • of
  • 4
Academic Video Service