You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Application of Hydrogels for Bone Regeneration
Hydrogels are versatile biomaterials characterized by three-dimensional, cross-linked, highly hydrated polymeric networks. These polymers exhibit a great variety of biochemical and biophysical properties, which allow for the diffusion of diverse molecules, such as drugs, active ingredients, growth factors, and nanoparticles. Meanwhile, these polymers can control chemical and molecular interactions at the cellular level. The polymeric network can be molded into different structures, imitating the structural characteristics of surrounding tissues and bone defects. Interestingly, the application of hydrogels in bone tissue engineering (BTE) has been gathering significant attention due to the beneficial bone improvement results that have been achieved.
  • 1.6K
  • 29 Jun 2023
Topic Review
Liquid Biopsy-Based Biosensors
Globally, non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths. The 5-year survival rate has remained at 16% for the past forty years despite advancements in chemotherapy and targeted therapies. Minimal residual disease (MRD) is described as the existence of either isolated tumour cells or circulating tumour cells in biological liquid of patients after removal of the primary tumour without any clinical signs of cancer. Recently, liquid biopsy has been promising as a non-invasive method of disease monitoring and treatment guidelines as an MRD marker. Liquid biopsy could be used to detect and assessment of earlier stages of NSCLC, post-treatment MRD, resistance to targeted therapies, immune checkpoint inhibitors (ICIs) and tumour mutational burden. MRD surveillance has been proposed as a potential marker for lung cancer relapse. Principally biosensors provide the quantitative analysis of various materials by converting biological functions into quantifiable signals. Biosensors are usually operated to detect antibodies, enzymes, DNA, RNA, EVs, and whole cells. Here we present a category of biosensors based on the signal transduction method for identifying biosensor-based biomarkers in liquid biopsy specimens to monitor lung cancer treatment
  • 1.5K
  • 22 Oct 2021
Topic Review
Body Membrane Extracellular Matrix
The membranous extracellular matrix (ECM) decellularized from body membranes (e.g., pleura, peritoneum, and amniotic membrane, etc) retain multiple bioactive components like collagen, laminin, fibronectin, growth factors, and polysaccharide. In addition, they also possess ultrastructure features similar to that of the natural tissues with distinct advantage in  high density  cell seeding, the migration of repair cells from adjacent tissues, and the mass exchange between tissues. These merits make membranous ECM scaffolds extremely attractive in regenerative medicine including but not limited to skin wound healing.
  • 1.5K
  • 17 Nov 2021
Topic Review
Fracture-Healing Process
Fracture-healing is a complex multi-stage process that usually progresses flawlessly, resulting in restoration of bone architecture and function. Regrettably, however, a considerable number of fractures fail to heal, resulting in delayed unions or non-unions. This may significantly impact several aspects of a patient’s life.
  • 1.4K
  • 27 Sep 2021
Topic Review
Epithelial–Mesenchymal Transition and Aging
Epithelial–Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. 
  • 1.4K
  • 27 Apr 2021
Topic Review
Alternative System for Secondary Metabolite Production
Medicinal plants are rich sources of bioactive compounds widely used as medicaments, food additives, perfumes, and agrochemicals. These secondary compounds are produced under stress conditions to carry out physiological tasks in plants. Secondary metabolites have a complex chemical structure with pharmacological properties. The widespread use of these metabolites in a lot of industrial sectors has raised the need to increase the production of secondary metabolites. Biotechnological methods of cell culture allow the conservation of plants, as well as the improvement of metabolite biosynthesis and the possibility to modify the synthesis pathways.
  • 1.3K
  • 11 Jan 2023
Topic Review
Mechanism of CNTs Uptake by Cells and Spheroids
Cell spheroids (CSs) are three-dimensional models in vitro that have a microenvironment similar to tissues. Such three-dimensional cellular structures are of great interest in the field of nano biomedical research, as they can simulate information about the characteristics of nanoparticles (NPs) by avoiding the use of laboratory animals.
  • 1.3K
  • 28 Jan 2023
Topic Review
Chondrocyte De-Differentiation for Nuclear Alterations
Autologous chondrocyte implantation (ACI) is a cell therapy to repair cartilage defects. In ACI a biopsy is taken from a non-load bearing area of the knee and expanded in-vitro. The expansion process provides the benefit of generating a large number of cells required for implantation; however, during the expansion these cells de-differentiate and lose their chondrocyte phenotype.
  • 1.3K
  • 06 Mar 2023
Topic Review
Scalable Production of Extracellular Vesicles
Extracellular vesicles (EVs) are minute vesicles with lipid bilayer membranes. EVs are secreted by cells for intercellular communication. Recently, EVs have received much attention, as they are rich in biological components such as nucleic acids, lipids, and proteins that play essential roles in tissue regeneration and disease modification. In addition, EVs can be developed as vaccines against cancer and infectious diseases, as the vesicle membrane has an abundance of antigenic determinants and virulent factors. EVs for therapeutic applications are typically collected from conditioned media of cultured cells. However, the number of EVs secreted by the cells is limited. Thus, it is critical to devise new strategies for the large-scale production of EVs.
  • 1.3K
  • 29 Jul 2022
Topic Review
Biomaterials for 3D Tissue Models
The techniques involved in culturing cells are critical as results are based on cellular response to drugs, cellular cues, external stimuli, and human physiology. In order to establish in vitro cultures, cells are either isolated from normal or diseased tissue and allowed to grow in two or three dimensions. Two-dimensional (2D) cell culture methods involve the proliferation of cells on flat rigid surfaces resulting in a monolayer culture, while in three-dimensional (3D) cell cultures, the additional dimension provides a more accurate representation of the tissue milieu. 
  • 1.3K
  • 01 Feb 2023
Topic Review
Genome Editing Among Bioethics and Regulatory Practices
In the last decade, genome editing technologies became very effective and several clinical trials have been started in order to use them for treating some genetic diseases. Interestingly, despite more than 50 years of discussion about the frontiers of genetics in human health and evolution, the debate about the bioethics and the regulatory practices of genome editing is still far from satisfactory answers. This delay results from an excessive emphasis on the effectiveness of the genome editing technologies that is relevant for the regulatory practices, but not at a bioethical level. Indeed, other factors (such as accessibility and acceptability) could make these techniques not accepted at the bioethical level, even in the presence of their 100% effectiveness.
  • 1.3K
  • 31 Dec 2021
Topic Review
Current Advanced on Hematopoietic Stem Cell
Blood is a connective tissue made up of approximately 34% cells and 66% plasma, transporting nutrients, gases and molecules in general to the whole body. Hematopoiesis is the main function of bone marrow. Human hematopoietic stem and progenitor cells reside in the bone marrow microenvironment, making it a hotspot for the development of hematopoietic diseases. Numerous alterations that correspond to disease progression have been identified in the bone marrow stem cell niche. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells determine the balance between the proliferation, differentiation and homeostasis of the stem cell compartment. Changes in this tightly regulated network can provoke malignant transformation. However, our understanding of human hematopoiesis and the associated niche biology remains limited due to accessibility to human material and the limits of in vitro culture models. Traditional culture systems for human hematopoietic studies lack microenvironment niches, spatial marrow gradients, and dense cellularity, rendering them incapable of effectively translating marrow physiology ex vivo.
  • 1.3K
  • 15 Mar 2022
Topic Review
Alveolar Bone Regeneration and Mesenchymal Stem Cells
Mesenchymal stem cells/stromal cells (MSCs), which have been applied in implantology and periodontology. MSCs, with their multilineage differentiation potential (differentiation into osteocytes, chondrocytes, adipocytes, muscle cells, and even neurocytes) are widely available from various tissues sources.
  • 1.3K
  • 17 Nov 2021
Topic Review
Plant Growth Regulation in Cell and Tissue Culture
Precise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for such scientific knowledge, which results in more productive and resilient in vitro plant propagation and acclimatization in the field. Surprisingly, but so far, researchers/industry-based protocols on the 60-year-old concepts ignore new plant physiology achievements. Namely, high nitrogen and halogens used in the culture medium and exogenous auxin/cytokinin ratio regulate plant morphogenesis.
  • 1.3K
  • 05 Feb 2024
Topic Review
Erythrocytes as Carriers of Therapeutic Enzymes
Therapeutic enzymes are biocatalyst drugs that bind to target substrates with a high affinity and specificity, catalyzing their conversion into their relevant products. The past five decades have seen the development of therapeutic enzymes for treating a wide range of medical conditions, including inherited enzyme deficiency disorders, acute poisoning, digestive disorders, cancer and cardiovascular diseases. Chemical modifications of the native enzyme (e.g., conjugation with polyethylene glycol) are often employed in the manufacturing process to increase protein stability, decrease immunogenicity, reduce renal ultrafiltration and in some cases, to enable targeting of the enzyme to the appropriate cellular compartment. The erythrocyte carrier has been extensively studied as a strategy for overcoming these limitations and increasing therapeutic efficacy. For a majority of the therapeutic applications investigated, the ability of the cell to reseal after creating pores in the membrane has been exploited for the purpose of introducing therapeutic agents.
  • 1.3K
  • 15 Apr 2022
Topic Review
Reprogramming of α-Cells into Insulin Producing Cells
Numerous cell sources are being explored to replenish functional β-cell mass since the proof-of -concept for cell therapy of diabetes was laid down by transplantation of islets. Various strategies that aim to generate bone fide insulin producing cells are explored.  In particular on reprogramming and especially on α-cells conversion into insulin producing cells are focused here. A logical place to begin with for generating β-cells is to utilise the plasticity of closely related endoderm derived cell types like pancreatic non-β-cells and coaxing them to adopt a β-cell phenotype. Given the close ontogenetic relationship, functional similarity and dependency among these cells, the potential for interconversion is unequivocal. Phenotypic plasticity between pancreatic α-cells and β-cells is notably pronounced.
  • 1.3K
  • 16 Sep 2022
Topic Review
MSCs for Osteoarthritis Treatment
Osteoarthritis (OA) has traditionally been known as a “wear and tear” disease, which is mainly characterized by the degradation of articular cartilage and changes in the subchondral bone. Despite the fact that OA is often thought of as a degenerative disease, the catabolic products of the cartilage matrix often promote inflammation by activating immune cells. Current OA treatment focuses on symptomatic treatment, with a primary focus on pain management, which does not promote cartilage regeneration or attenuate joint inflammation. Since articular cartilage have no ability to regenerate, thus regeneration of the tissue is one of the key targets of modern treatments for OA. Cell-based therapies are among the new therapeutic strategies for OA. Mesenchymal stem cells (MSCs) have been extensively researched as potential therapeutic agents in cell-based therapy of OA due to their ability to differentiate into chondrocytes and their immunomodulatory properties that can facilitate cartilage repair and regeneration.
  • 1.3K
  • 21 Jul 2021
Topic Review
Cytoplasmic Intermediate Filaments
Cytoplasmic intermediate filaments (IFs), which together with actin and microtubules form the cytoskeleton, are composed of a large and diverse family of proteins. Efforts to elucidate the molecular mechanisms responsible for IF-associated diseases increasingly point towards a major contribution of IFs to the cell’s ability to adapt, resist and respond to mechanical challenges. From these observations, which echo the impressive resilience of IFs in vitro, we here discuss the role of IFs as master integrators of cell and tissue mechanics.
  • 1.3K
  • 01 Sep 2021
Topic Review
Strontium Functionalization of Biomaterials for Bone Tissue Engineering
Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies.
  • 1.3K
  • 07 Mar 2022
Topic Review
Glyoxal-Crosslinked Chitosan/Gelatin Hydrogel
The clinical application of human platelet lysate (HPL) holds promise for tissue regeneration, and the development of an efficient vehicle for its delivery is desired. Chitosan-based hydrogels are potential candidates, but they often exhibit weak mechanical properties. In this study, a chitosan/gelatin (CS-GE) hydrogel crosslinked by glyoxal was fabricated for sustained release of HPL. After an ideal glyoxal concentration was determined, we further characterized the crosslinked CS-GE hydrogels encapsulated with different amounts of HPL. The HPL-incorporated hydrogel was shown to significantly promote the proliferation of Hs68 cells and the migration of HUVECs. Moreover, the release pattern of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB) from hydrogel was examined in vitro, demonstrating a sustained release profile of the growth factors. Finally, the chick chorioallantoic membrane assay revealed that HPL encapsulation in the hydrogel significantly stimulated angiogenesis in ovo. These results demonstrate the great potential of the crosslinked CS-GE hydrogel to serve as an effective delivery system for HPL to promote tissue regeneration. 
  • 1.2K
  • 23 Nov 2021
  • Page
  • of
  • 14
Academic Video Service