Topic Review
Types of Cellular Stress
With the start of the fermentation process, different stressful factors appear in the environment that directly affect the yeasts. Among them are osmotic, oxidative, and ethanol stresses, nitrogen starvation, low external pH, heat shock, prolonged anaerobiosis or the appearance of toxic molecules. As a shield against them, microorganisms have created defense responses specific to each type of stress, as well as a general environmental stress response (ESR).
  • 222
  • 25 Oct 2023
Topic Review
Types of Cell Death
Inflammation and free radicals can stimulate cell self-destruction. Inflammation and cell death are vital aspects of most diseases. Accumulation of cell damage leads to the impairment and dysregulation of the cell function. Thus, understanding the pathomechanism and molecular signaling pathways involved in cell death is necessary.
  • 588
  • 04 Dec 2023
Topic Review
Types of Bacterial Movement
Skin and wound infections are serious medical problems, and the diversity of bacteria makes such infections difficult to treat. Bacteria possess many virulence factors, among which motility plays a key role in skin infections. This feature allows for movement over the skin surface and relocation into the wound. The aim is to review the type of bacterial movement and to indicate the underlying mechanisms than can serve as a target for developing or modifying antibacterial therapies applied in wound infection treatment. Five types of bacterial movement are distinguished: appendage-dependent (swimming, swarming, and twitching) and appendage-independent (gliding and sliding). All of them allow bacteria to relocate and aid bacteria during infection. Swimming motility allows bacteria to spread from ‘persister cells’ in biofilm microcolonies and colonise other tissues. Twitching motility enables bacteria to press through the tissues during infection, whereas sliding motility allows cocci (defined as non-motile) to migrate over surfaces. Bacteria during swarming display greater resistance to antimicrobials. Molecular motors generating the focal adhesion complexes in the bacterial cell leaflet generate a ‘wave’, which pushes bacterial cells lacking appendages, thereby enabling movement.
  • 419
  • 06 Jul 2023
Topic Review
Types and General Role of Organic Amendments
Salinity and metal stress are significant abiotic factors that negatively influence plant growth and development. These factors lead to diminished agricultural yields on a global scale. Organic amendments have emerged as a potential solution for mitigating the adverse effects of salinity and metal stress on plants. When plants experience these stresses, they produce reactive oxygen species, which can impair protein synthesis and damage cellular membranes. Organic amendments, including biochar, vermicompost, green manure, and farmyard manure, have been shown to facilitate soil nitrogen uptake, an essential component for protein synthesis, and enhance various plant processes such as metabolism, protein accumulation, and antioxidant activities. Researchers have observed that the application of organic amendments improves plant stress tolerance, plant growth, and yield.
  • 341
  • 19 Mar 2024
Topic Review
Types and Applications of Unconventional Feed
Unconventional feed, which is abundant in China, contains anti-nutritional factors and toxins; however, these can be greatly reduced with microbial fermentation, thus improving the nutrient content of the feed, enhancing animal appetites, and ultimately significantly improving the intestinal health and growth performance of animals. When oxidative stress occurs, fermented feed can effectively reduce the damage caused by stress to the gastrointestinal tract, accelerate the removal of gastrointestinal abnormalities, improve the ability to resist intestinal stress, and ensure the efficient production of animals. 
  • 203
  • 11 Mar 2024
Topic Review
Type-2 Diabetes Mellitus and Dementia
Dementia is reported to be common in those with type 2 diabetes mellitus. Type 2 diabetes contributes to common molecular mechanisms and an underlying pathology with dementia. Brain cells becoming resistant to insulin leads to elevated blood glucose levels, impaired synaptic plasticity, microglial overactivation, mitochondrial dysfunction, neuronal apoptosis, nutrient deprivation, TAU (Tubulin-Associated Unit) phosphorylation, and cholinergic dysfunction.
  • 753
  • 30 Nov 2022
Topic Review
Type III Secretion System Inhibitors
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. 
  • 832
  • 06 Feb 2021
Topic Review
Type II Transmembrane Serine Proteases in Adipose Tissue
Adipose tissue is a crucial organ in energy metabolism and thermoregulation. Adipose tissue phenotype is controlled by various signaling mechanisms under pathophysiological conditions. Type II transmembrane serine proteases (TTSPs) are a group of trypsin-like enzymes anchoring on the cell surface. These proteases act in diverse tissues to regulate physiological processes, such as food digestion, salt-water balance, iron metabolism, epithelial integrity, and auditory nerve development. Several members of the TTSP family, namely, hepsin, matriptase-2, and corin, have been shown to play a role in regulating lipid metabolism, adipose tissue phenotype, and thermogenesis, via direct growth factor activation or indirect hormonal mechanisms. In mice, hepsin deficiency increases adipose browning and protects from high-fat diet-induced hyperglycemia, hyperlipidemia, and obesity. Similarly, matriptase-2 deficiency increases fat lipolysis and reduces obesity and hepatic steatosis in high-fat diet-fed mice. In contrast, corin deficiency increases white adipose weights and cell sizes, suppresses adipocyte browning and thermogenic responses, and causes cold intolerance in mice. These findings highlight an important role of TTSPs in modifying cellular phenotype and function in adipose tissue. 
  • 364
  • 02 Aug 2023
Topic Review
Type II Topoisomerases
Type II topoisomerases are essential enzymes that modulate the topological state of DNA supercoiling in all living organisms. These enzymes alter DNA topology by performing double-stranded passage reactions on over- or underwound DNA substrates. This strand passage reaction generates a transient covalent enzyme–cleaved DNA structure known as the cleavage complex.
  • 375
  • 17 Jul 2023
Topic Review
Type I Interferons
Interferons (IFNs) are a heterogenous group of proteins that can be classified into three families (Type I, II, and III) based on distinct functions and characteristics. The family of human type I IFN is composed of 5 subgroups: IFN-α, -β, -κ, -ε, and -ω, whereas the type II IFN group only contains IFN-γ. Type III IFNs are composed of four IFN-λ proteins.
  • 892
  • 06 Mar 2021
  • Page
  • of
  • 1814
Video Production Service