You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Silver Nanoparticle
Silver nanoparticles (AgNPs) are among the most commonly used engineered nanomaterials with medicinal, industrial, and agricultural applications. Considering the vast usage of AgNPs, there is a possibility of their release into the environment, and their potential toxicological effects on plants and animals. Apart from using the particulate form of silver, AgNPs may be transformed to silver oxide or silver sulfide via oxidation or sulfidation, respectively, and these ones impact the soil and living organisms in a variety of ways. Therefore, it is critical to address the behavior of nanoparticles in the environment and possible methods for their removal. This review focuses on three objectives to discuss this issue including: the possible pathways for the release of AgNPs into the environment; the toxicological effects of AgNPs on plants and microorganisms; and the recommended phytoremediation approaches.
  • 2.2K
  • 19 Oct 2021
Topic Review
Targeted Delivery of Exosomes to the Brain
Delivering therapeutics to the central nervous system (CNS) is difficult because of the blood–brain barrier (BBB). Therapeutic delivery across the tight junctions of the BBB can be achieved through various endogenous transportation mechanisms. Receptor-mediated transcytosis (RMT) is one of the most widely investigated and used methods. Drugs can hijack RMT by expressing specific ligands that bind to receptors mediating transcytosis, such as the transferrin receptor (TfR), low-density lipoprotein receptor (LDLR), and insulin receptor (INSR). Cell-penetrating peptides and viral components originating from neurotropic viruses can also be utilized for the efficient BBB crossing of therapeutics. Exosomes, or small extracellular vesicles, have gained attention as natural nanoparticles for treating CNS diseases, owing to their potential for natural BBB crossing and broad surface engineering capability. RMT-mediated transport of exosomes expressing ligands such as LDLR-targeting apolipoprotein B has shown promising results.
  • 2.2K
  • 13 May 2022
Topic Review
Scalable Synthesis of Mesoporous TiO2
Increasing environmental concern, related to pollution and clean energy demand, have urged the development of new smart solutions profiting from nanotechnology, including the renowned nanomaterial-assisted photocatalytic degradation of pollutants. In this framework, increasing efforts are devoted to the development of TiO2-based nanomaterials with improved photocatalytic activity. A plethora of synthesis routes to obtain high quality TiO2-based nanomaterials is currently available. Nonetheless, large-scale production and the application of nanosized TiO2 is still hampered by technological issues and the high cost related to the capability to obtain TiO2 nanoparticles with high reaction yield and adequate morphological and structural control. 
  • 2.2K
  • 26 Jul 2021
Topic Review
Coal Fly Ash
Coal fly ash (CFA) is a complex material produced from the combustion of pulverized coal in thermal power plants during the production of electricity.
  • 2.2K
  • 18 Mar 2021
Topic Review
Optical Properties of Carbon Quantum Dots
Carbon quantum dots (CQDs), also known as carbon dots (CDs), are novel zero-dimensional fluorescent carbon-based nanomaterials. CQDs have attracted enormous attention around the world because of their excellent optical properties as well as water solubility, biocompatibility, low toxicity, eco-friendliness, and simple synthesis routes. CQDs have numerous applications in bioimaging, biosensing, chemical sensing, nanomedicine, solar cells, drug delivery, and light-emitting diodes.
  • 2.2K
  • 09 Mar 2023
Topic Review
Nanoporous Anodic Alumina
Nanoporous Anodic Alumina (NAA) is formed by the electrochemical anodization of pure aluminum wafers and consists of a parallel array of pores surrounded by hexagonal cells of aluminum oxide (alumina).
  • 2.2K
  • 25 Mar 2021
Topic Review
Ceramic-Based Hybrid Supercapacitors
Supercapacitors (SCs) have attracted considerable attention among various energy storage devices due to their high specific capacity, high power density, long cycle life, economic efficiency, environmental friendliness, high safety, and fast charge/discharge rates. SCs are devices that can store large amounts of electrical energy and release it quickly, making them ideal for use in a wide range of applications. They are often used in conjunction with batteries to provide a power boost when needed and can also be used as a standalone power source. They can be used in various potential applications, such as portable equipment, smart electronic systems, electric vehicles, and grid energy storage systems.
  • 2.2K
  • 02 Nov 2022
Topic Review
Extended Surfactants Using HLDN approach
Extended surfactants are molecules including an intramolecular extension that allow attaining high performance without the need for cosurfactant or linker alcohol. The polypropylene oxide chain intramolecular extension generates a polarity transition inside the molecule that produces more interactions with the oil and aqueous phases. The idea was developed in the 1990s, basically to fasten together the rather hydrophilic surfactant and the lipophilic linker, producing the same effect as the mixture without losing a part of the lipophilic linker going away from the interface. Since the lipophilic linker was an amphiphile with a small hydrophilic part located close to the interface, the single structure was developed to imitate the mixture situation. It contains a polar head located in water, then an intermediate slightly polar zone in the oil phase close to the interface, and finally, the surfactant classical hydrocarbon tail.
  • 2.2K
  • 14 Feb 2023
Topic Review
Olive Biophenols Oleuropein and Hydroxytyrosol
Oleuropein (OLE) and hydroxytyrosol (HT) are olive-derived phenols recognised as health-promoting agents with antioxidant, anti-inflammatory, cardioprotective, antifungal, antimicrobial, and antitumor activities, providing a wide range of applications as functional food ingredients. HT is Generally Recognised as Safe (GRAS) by the European Food Safety Authority (EFSA) and the Food and Drug Administration (FDA), whereas OLE is included in EFSA daily consumptions recommendations, albeit there is no official GRAS status for its pure form. 
  • 2.2K
  • 05 May 2022
Topic Review
Gold Nanoparticles and Their Biomedical Applications
Gold nanoparticles (AuNPs) have the ability to absorb and scatter light, and can convert optical energy into heat using nonradiative electron relaxation dynamics and surface chemistry. Moreover, gold nanoparticles can be used as drug carriers, making them very attractive and versatile nanoparticles. The features of AuNPs that make them particularly attractive in biomedicine are their excellent stability and biocompatibility, ease to functionalize their surfaces, their low toxicity, and their drug transferability. Other features, such as shape and size adaptation, have certainly drawn attention for the use of gold nanoparticles in many fields.
  • 2.2K
  • 19 May 2022
Topic Review
TiO2 as Water Splitting Photocatalyst
Hydrogen produced from water using photocatalysts driven by sunlight is a sustainable way to overcome the intermittency issues of solar power and provide a green alternative to fossil fuels. TiO2 has been used as a photocatalyst since the 1970s due to its low cost, earth abundance, and stability. There has been a wide range of research activities in order to enhance the use of TiO2 as a photocatalyst using dopants, modifying the surface, or depositing noble metals. However, the issues such as wide bandgap, high electron-hole recombination time, and a large overpotential for the hydrogen evolution reaction (HER) persist as a challenge. Here, we review state-of-the-art experimental and theoretical research on TiO2 based photocatalysts and identify challenges that have to be focused on to drive the field further. We conclude with a discussion of four challenges for TiO2 photocatalysts—non-standardized presentation of results, bandgap in the ultraviolet (UV) region, lack of collaboration between experimental and theoretical work, and lack of large/small scale production facilities. We also highlight the importance of combining computational modeling with experimental work to make further advances in this exciting field.
  • 2.1K
  • 24 Mar 2021
Topic Review
Magnetite Nanoparticles
Magnetite nanoparticles with different surface coverages are of great interest for many applications due to their intrinsic magnetic properties, nanometer size, and definite surface morphology. Magnetite nanoparticles are widely used for different medical-biological applications while their usage in optics is not as widespread. In recent years, nanomagnetite suspensions, so-called magnetic ferrofluids, are applied in optics due to their magneto-optical properties.
  • 2.1K
  • 24 Apr 2022
Topic Review
Functionalized CQDs in Food Analysis
Carbon quantum dots (CQDs) with stable physicochemical properties and excellent optical performances are a kind of emerging and fascinating carbon nanomaterial with size less than 10 nm. The significant advantages of low cytotoxicity and cost make CQDs an ideal raw material for constructing effective sensing devices. The CQDs can be functionalized and combined with other kinds of materials to form the nanostructured composites with unique properties, having a very broad application prospect for related research of many fields. Green-synthesized CQDs have been applied in functional components analysis and monitoring trace harmful substances in food and made remarkable research progress. This entry reviews the relevant sensing applications of CQDs in food components analysis and food safety inspection of recent five years, which can provide significant references for further study of fluorescent and biomimetic sensing of CQDs in this field.
  • 2.1K
  • 28 Oct 2020
Topic Review
Nanoencapsulation of Essential Oils
Essential oils (EOs) are complex mixtures of volatile and semi-volatile organic compounds that originate from different plant tissues, including flowers, buds, leaves and bark. According to their chemical composition, EOs have a characteristic aroma and present a wide spectrum of applications. However, EOs are unstable and easily degradable if not protected from external factors such as oxidation, heat and light. Therefore, there is growing interest in the encapsulation of EOs, since polymeric nanocarriers serve as a barrier between the oil and the environment. In this context, nanoencapsulation seems to be an interesting approach as it not only prevents the exposure and degradation of EOs and their bioactive constituents by creating a physical barrier, but it also facilitates their controlled release, thus resulting in greater bioavailability and efficiency.
  • 2.1K
  • 20 Dec 2022
Topic Review
Barriers to Electric Vehicle Adoption in Thailand
Electric vehicles (EVs) are considered to be a solution for sustainable transportation. EVs can reduce fossil fuel consumption, greenhouse gas emissions, and the negative impacts of climate change and global warming, as well as help improve air quality.
  • 2.1K
  • 09 Dec 2021
Topic Review
N-Type Organic Semiconductors
This work was intended to enlarge the gates toward green organic technologies at room temperature, searching for new types of semiconductors with low toxicity and simple molecular organization. In our previous studies, para-aminobenzoic acid was used to construct a p-type green semiconductor. A non-toxic organic compound, acting as an electron donor, is sulpho-salicylic acid. SSA can be efficiently attached to the external shell of a ferrite (Fe3O4) nanocore, providing Fe3O4–SSA nanoparticles. This is a N-Type Organic Semiconductor - made by green technologies and used to construct a simple thin film transistor. 
  • 2.1K
  • 22 Oct 2020
Topic Review
Two-Dimensional Materials for Electrocatalytic CO2 Reduction
Electrocatalytic CO2 reduction (ECR) is an attractive approach to convert atmospheric CO2 to value-added chemicals and fuels. However, this process is still hindered by sluggish CO2 reaction kinetics and the lack of efficient electrocatalysts. Therefore, new strategies for electrocatalyst design should be developed to solve these problems. Two-dimensional (2D) materials possess great potential in ECR because of their unique electronic and structural properties, excellent electrical conductivity, high atomic utilization and high specific surface area.
  • 2.1K
  • 23 Mar 2022
Topic Review
A Review of Geometry, Construction and Modelling for Carbon Nanotori
After the discovery of circular formations of single walled carbon nanotubes called fullerene crop circles, their structure has become one of the most researched amongst carbon nanostructures due to their particular interesting physical properties. Several experiments and simulations have been conducted to understand these intriguing objects, including their formation and their hidden characteristics. It is scientifically conceivable that these crop circles, nowadays referred to as carbon nanotori, can be formed by experimentally bending carbon nanotubes into ring shaped structures or by connecting several sections of carbon nanotubes. Toroidal carbon nanotubes are likely to have many applications, especially in electricity and magnetism. In this review, geometry, construction, modelling and possible applications are discussed and the existing known analytical expressions, as obtained from the Lennard-Jones potential and the continuum approximation, for their interaction energies with other nanostructures are summarised.
  • 2.1K
  • 29 Oct 2020
Topic Review
Surface-Enhanced Raman Scattering
The efficiency of the generation of Raman spectra by molecules adsorbed on some substrates (or placed at a very close distance to some substrates) may be many orders of magnitude larger than the efficiency of the generation of Raman spectra by molecules that are not adsorbed. This effect is called surface-enhanced Raman scattering (SERS). In the first SERS experiments, nanostructured plasmonic metals have been used as SERS-active materials. Later, other types of SERS-active materials have also been developed.
  • 2.1K
  • 10 Feb 2021
Topic Review
Chronic Wounds
The chronicity of wounds is affected by several contributory factors, including hormonal imbalances, cytokines, invasive microbial infections, and growth factors. More importantly, bacterial infections have been implicated as the predominant feature in most chronic wound microenvironments, including Staphylococcus aureus and Pseudomonas aeruginosa. These bacteria exist in polymicrobial forms forming biofilms that afford them protection against the host’s immunity and conventional antibiotics. S. aureus biofilms are sometimes present close to the surface of chronic wounds, while P. aeruginosa biofilms appear deep within wound tissue. The recalcitrant disposition of these microbes has been implicated as one of the causalities of antimicrobial resistance.
  • 2.1K
  • 17 May 2022
  • Page
  • of
  • 42
Academic Video Service