Topic Review
Farnesoid X Receptor
Farnesoid X receptor (FXR) has a central role in Bile Acids (BA) homeostasis and recent publications revealed that changes in autophagy due to BA-induced reactive oxygen species and increased anti-oxidant response via nuclear factor E2-related factor 2 (NRF2), result in dysregulation of FXR signaling. Several mechanistic studies have identified new dysfunctions of the cholestatic liver at cellular and molecular level, opening new venues for developing more performant therapies.
  • 714
  • 12 Oct 2021
Topic Review
Nrf2 in Wound Healing Process
Wound healing involves a series of cellular events in damaged cells and tissues initiated with hemostasis and finally culminating with the formation of a fibrin clot. However, delay in the normal wound healing process during pathological conditions due to reactive oxygen species, inflammation and immune suppression at the wound site represents a medical challenge. So far, many therapeutic strategies have been developed to improve cellular homeostasis and chronic wounds in order to accelerate wound repair. In this context, the role of Nuclear factor erythroid 2-related factor 2 (Nrf2) during the wound healing process has been a stimulating research topic for therapeutic perspectives. Nrf2 is the main regulator of intracellular redox homeostasis. It increases cytoprotective gene expression and the antioxidant capacity of mammalian cells. It has been reported that some bioactive compounds attenuate cellular stress and thus accelerate cell proliferation, neovascularization and repair of damaged tissues by promoting Nrf2 activation.
  • 713
  • 23 Jun 2021
Topic Review
Direct Arylation in Pincer Complexes
Direct arylation is an atom-economical alternative to more established procedures such as Stille, Suzuki or Negishi arylation reactions. In comparison with other palladium sources and ligands, the use of palladium pincer complexes as catalysts or pre-catalysts for direct arylation has resulted in improved efficiency, higher reaction yields, and advantageous reaction conditions. In addition to a revision of the literature concerning intra- and intermolecular direct arylation reactions performed in the presence of palladium pincer complexes, the role of these remarkably active catalysts will also be discussed.
  • 713
  • 09 Aug 2021
Topic Review
ABCG2
The ABCG2 (also named breast cancer resistance protein—BCRP, or mitoxantrone resistance protein—MXR) is an integral membrane protein belonging to the ABC (ATP-binding cassette) protein superfamily. ABCG2 is an active transporter utilizing the energy of ATP binding and hydrolysis to translocate various substrate molecules across the plasma membrane from the cells to the extracellular space. Its transported substrates include endobiotics (endogenous substances), such as uric acid, as well as xenobiotics, such as anti-cancer drugs. ABCG2 plays a pivotal role in uric acid clearance; thus, its malfunction may lead to hyperuricemia and gout. On the other hand, ABCG2 residing in various barrier tissues is involved in the innate defense mechanisms of the body, influencing the absorption, distribution, excretion of potentially toxic endo- and exogenous compounds.
  • 713
  • 11 May 2021
Topic Review
The Chloroplast Epitranscriptome
Here, we report about epitranscriptomic methods for the identification of RNA modifications, bioinformatic tools, and the potential physiological roles of RNA modifiers and interpreters in plant nuclear/cytoplasmic gene expression related to chloroplast functions and the post-transcriptional fate of chloroplast RNAs.
  • 712
  • 03 Aug 2021
Topic Review
FTO Dioxygenase
The FTO (FaT mass and Obesity-associated) protein is an alpha-ketoglutarate and iron dependent dioxygenase, a member of ALKBH family proteins. FTO removes the methyl groups from modified nucleotides on single stranded DNA or RNA with N6-methyladenozine in the mRNA removed most efficiently. It is engaged in wide range of key physiological processes such as adipogenesis, cell cycle progression, heart remodelling, neural development and osteogenesis. Impairments of FTO activity is lethal or leads to serious developmental disorders. It is also one of the factors responsible for development and maintenance of many type of cancers. FTO acts in cooperation with other proteins e.g. CaMKII, MRS, SFPQ or XPO2. Similarly to other dioxygenases, it shows ability to form homodimer. Recently, it was shown that FTO interacts with the calmodulin (CaM) in Ca2+ dependent manner.
  • 712
  • 26 Oct 2021
Topic Review
RNA Structure and RNA–RNA Interactions
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. This entry describes different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure, and highlight a two-way relationship between RNA structure and interactions.
  • 711
  • 12 Jan 2022
Topic Review
Biochemistry of Antioxidants and Their Mode of Action
Antioxidants are a class of a multitude of chemical substances clearly associated with large health benefits and lower risks of various age-related diseases.
  • 711
  • 11 Apr 2023
Topic Review
Mitochondria and Aging
Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance of the ‘physiologic reserve’. Biological aging is characterized by buildup of intracellular debris (e.g., oxidative damage, protein aggregates, and lipofuscin), which fuels a ‘vicious cycle’ of cell/DNA danger response activation (CDR and DDR, respectively), chronic inflammation (‘inflammaging’), and progressive cell deterioration. Therapeutic options that coordinately mitigate age-related declines in mitochondria and organelles involved in quality control, repair, and recycling are therefore highly desirable.
  • 710
  • 29 Mar 2022
Topic Review
Genetic Effects on Plant Immunity
An immune system is a protective mechanism that shields plants from environmental stresses. This primary function is to maintain optimal circumstances for the growth and development of plant tissues while avoiding harm from biotic and abiotic stress factors. Plants subjected to various stressors initiate stress signaling cascades that affect multiple gene expressions and induce adaptation. These signaling pathways are coordinated by transcription factors, non-coding RNAs, RNA-binding proteins, and protein-protein interaction networks.
  • 710
  • 22 Nov 2022
Topic Review
Preventive Triple Gene Therapy
Currently, the main fundamental and clinical interest for stroke therapy is focused on developing a neuroprotective treatment of a penumbra region within the therapeutic window. The development of treatments for ischemic stroke in at-risk patients is of particular interest. Preventive gene therapy may significantly reduce the negative consequences of ischemia-induced brain injury. 
  • 710
  • 26 Oct 2020
Topic Review
Tellurium: Its Influence on Organisms
Tellurium (Te) is a member of the chalcogen group, which includes oxygen, sulphur, selenium (Se) and polonium . The first three members of the chalcogen group have crucial functions in biochemistry, biology and medicine, whereas Te is a strange element with no apparent role in biological systems. Moreover, it belongs to the group of very few elements in the Periodic Table that have been almost completely ignored.
  • 709
  • 09 Jul 2021
Topic Review
Aflatoxins in Feed
Feeding farm animals with aflatoxin-contaminated feed can cause various severe toxic effects, leading to increased susceptibility to infectious diseases and increased mortality, weight loss, poor performance and reduced reproductive capability. Following ingestion of contaminated foodstuffs, aflatoxins are metabolized and biotransformed differently in animals. 
  • 709
  • 16 Dec 2022
Topic Review
Inositols
Inositols, especially myo-inositol and inositol hexakisphosphate, also known as phytic acid or IP6, with their biological activities received much attention for their role in multiple health beneficial effects. Although their roles in cancer treatment and prevention have been extensively reported, interestingly, they may also have distinctive properties in energy metabolism and metabolic disorders.
  • 708
  • 10 Dec 2020
Topic Review
Immune Endocannabinoid System
Because of the immunoregulatory properties of cannabinoids, the endocannabinoid system (ECS) may have an important role in shaping the tumor microenvironment (TME). Members of the ECS, an entity that consists of cannabinoid receptors, endocannabinoids and their synthesizing/degrading enzymes, have been associated with both tumor growth and rejection. Immune cells express cannabinoid receptors and produce endocannabinoids, thereby forming an “immune endocannabinoid system”. Although in vitro effects of exogenous cannabinoids on immune cells are well described, the role of the ECS in the TME, and hence in tumor development and immunotherapy, is still elusive.
  • 708
  • 15 Dec 2020
Topic Review
Rapamycin Signaling at Muscle Fiber Fate in Sarcopenia
Sarcopenia, the age-related decline of muscle mass and strength/function is a major risk factor for disability and loss of independence in late life. Studies have shown that behavioral interventions (e.g., physical activity, adapted nutrition) reduce the rate of muscle wasting during aging. However, an incomplete understanding of the mechanisms driving age-related muscle loss has hampered the development of effective drugs to prevent or treat sarcopenia. Altered muscle protein metabolism is considered to be one of the main factors underlying the development and progression of sarcopenia. While basal rates of muscle protein synthesis (MPS) and degradation (MPD) seem to be unaffected by age, the anabolic response to a variety of stimuli (e.g., exercise, nutrient ingestion) is blunted during aging. The mammalian target of rapamycin (mTOR) is a key regulator of muscle anabolic and catabolic pathways and, hence, a promising target for interventions against sarcopenia.
  • 708
  • 30 Nov 2022
Topic Review
Amyloidogenic Regions in bPaS1
Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S ribosomal subunit and is also able to interact with mRNA and tmRNA. An important feature of the S1 protein family is a strong tendency towards aggregation. 
  • 707
  • 20 Jul 2021
Topic Review
A Paraoxonase for All Seasons
Paraoxonases (PON) are a multigene family consisting of three enzymes, PON1, PON2, and PON3, located on human chromosome 7 (7q21.3–22.1). All three PONs have been shown to act as antioxidants and consequently have anti-inflammatory effects in various disease states such as atherosclerosis and cardiovascular diseases.
  • 707
  • 12 Apr 2022
Topic Review
Chemical Changes in Atherosclerosis
Fiberoptic Raman spectroscopy and Raman microscopy were used to investigate alterations in the aorta wall and the surrounding perivascular adipose tissue (PVAT) in the murine model of atherosclerosis (Apoe-/-/Ldlr-/- mice). Both abdominal and thoracic parts of the aorta were studied to account for the heterogenic chemical composition of aorta and its localization-dependent response in progression of atherosclerosis. The average Raman spectra obtained for both parts of aorta cross sections revealed that the chemical composition of intima-media layers along aorta remains relatively homogeneous while the lipid content in the adventitia layer markedly increases with decreasing distance to PVAT. Moreover, our results demonstrate that the increase of the lipid to protein ratio in the aorta wall correlates directly with the increased unsaturation level of lipids in PVAT and these changes occur only in the abdominal, but not in thoracic, aorta. In summary, distinct pathophysiological response in the aortic vascular wall could be uncovered by fiber optic Raman spectroscopy based on simple parameters detecting chemical contents of lipids in PVAT.
  • 705
  • 21 Jul 2020
Topic Review
Heat Shock Protein B8
The Heat Shock Protein B8 (HSPB8) is a small chaperone involved in chaperone-assisted selective autophagy (CASA). CASA promotes the selective degradation of proteins to counteract cell stress such as tumor-induced stress. HSPB8 is also involved in (i) the cell division machinery regulating chromosome segregation and cell cycle arrest in the G0/G1 phase and (ii) inflammation regulating dendritic cell maturation and cytokine production. HSPB8 expression and role are tumor-specific, showing a dual and opposite role.
  • 705
  • 10 Mar 2021
  • Page
  • of
  • 133
ScholarVision Creations