You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Lignin Biopolymer in Biomaterials Synthesis
Lignin is one of the wood and plant cell wall components that is available in large quantities in nature. Its polyphenolic chemical structure has been of interest for valorization and industrial application studies. Lignin can be obtained from wood by various delignification chemical processes, which give it a structure and specific properties that will depend on the plant species. Due to the versatility and chemical diversity of lignin, the chemical industry has focused on its use as a viable alternative of renewable raw material for the synthesis of new and sustainable biomaterials. 
  • 3.4K
  • 08 Apr 2021
Topic Review
Extraction Functional Ingredients from Jackfruit
Various studies in the literature showed the effect of conventional and non-conventional extraction methods to obtain jackfruit functional ingredients; among the non-conventional methods, some use emerging technologies to extract or as a pre-treatment. Among the studies using conventional extraction, applying solvents such as methanoland oxalic acidstands out, as well as the extraction with hot water. Regarding extraction by emerging technologies, radio frequency-assistedand supercritical fluid (SFE) with CO2extractions have attracted attention owing to their less negative impact on the environment and safety of the final product obtained in comparison with other methods using non-conventional technologies.
  • 3.3K
  • 26 Aug 2021
Topic Review
Surfactants in Corrosion Inhibitors
Surfactants are commonly used as corrosion inhibitors due to their ability to adsorb onto metal surfaces and form a protective barrier. When surfactants are added to a solution, they can reduce the surface tension and promote the wetting of the metal surface by the solution. This allows the surfactant molecules to be attracted to the metal surface, where they can adsorb and form a protective layer. Surfactants can also help to inhibit corrosion by reducing the electrochemical activity of the metal surface. This can be achieved by either reducing the rate of anodic or cathodic reactions, or by reducing the rate of ion transport across the metal-solution interface. By inhibiting these electrochemical processes, the surfactant can slow down the rate of corrosion and prevent further degradation of the metal surface. In addition to their inhibitive properties, surfactants can also improve the performance of other corrosion inhibitors. For example, surfactants can enhance the adsorption of organic inhibitors onto metal surfaces, which can increase their effectiveness. Surfactants can also improve the solubility and stability of inorganic inhibitors, which can improve their dispersibility in a solution.
  • 3.2K
  • 24 Mar 2023
Topic Review
Phytochemicals Used for Hair Dyeing
Natural dyes have been used since ancient times, when they were used not only for hair coloration, but also for medicinal, decoration and religious purposes. Many organic compounds have been identified as the principal coloring matters in hair dye plants and investigated for dyeing performance under experimental conditions. Natural colorants can be classified based on dye source, application method and chemical structure.
  • 3.2K
  • 23 Nov 2022
Topic Review
Alkylimidazoles
Alkylimidazoles have good complexing properties, also they are  cheap so can be successfully used in the separation of metal ions from aqueous solutions.
  • 3.1K
  • 16 Dec 2020
Topic Review
Flash-Boiling Atomization
Flash-boiling atomization is a method by which a liquid is brought into a superheated state, such as vigorous boiling, in a short timeframe while the bubbles grow considerably fast. This leads to the disintegration of the continuous liquid into tiny droplets. Flash-boiling, effervescent, and air-assisted atomization are based on a two-phase flow to achieve effective atomization. 
  • 3.0K
  • 07 Oct 2023
Topic Review
Bucherer–Bergs Multicomponent Synthesis of Hydantoins
The Bucherer–Bergs reaction is one of the most convenient general methods for the preparation of 5-substituted and 5,5-disubstituted hydantoins (imidazolidine-2,4-diones, 2,4-dioxoimidazolidines). Generally, in this multicomponent reaction, the aldehyde or ketone in aqueous ethanol is heated at 60–70° with potassium (or sodium) cyanide and ammonium carbonate to produce directly hydantoins 1.
  • 2.9K
  • 28 Jul 2021
Topic Review
Processing Properties of Starch
Starch is the second most abundantly available natural polymer in the world, after cellulose. If we add its biodegradability and non-toxicity to the natural environment, it becomes a raw material very attractive for the food and non-food industries. However, in the latter case, mainly due to the high hydrophilicity of starch, it is necessary to carry out many more or less complex operations and processes. One of the fastest growing industries in the last decade is the processing of biodegradable materials for packaging purposes. This is mainly due to awareness of producers and consumers about the dangers of unlimited production and the use of non-degradable petroleum polymers.
  • 2.9K
  • 05 Apr 2021
Topic Review
CO2 Hydroboration
The use of CO2 as C1 building block for chemical synthesis is receiving growing attention, due to the potential of this simple molecule as abundant and cheap renewable feedstock. Among the possible reductants used in the literature to bring about CO2 reduction to C1 derivatives, hydroboranes have found various applications, in the presence of suitable homogenous catalysts. The main results obtained since 2016 in the synthetic design of main group, first and second row transition metals for use as catalysts for CO2 hydroboration are summarized.
  • 2.9K
  • 04 Jun 2024
Topic Review
Phosphorus Compounds of Natural Origin
Natural phosphorus compounds are essential for modern biological systems, and their diverse biological properties testify to their importance in the world of living organisms. They provide stable ligation necessary for fixing information in RNA and DNA, contribute to cellular structure in phospholipids, serve as the main source of biochemical energy (eg, ATP, phosphoenolpyruvate, creatinephosphate), and are present in a large number of metabolites. Сentral place that phosphates retain in biological systems allows us to conclude that they played an important role in the emergence of life on Earth. In recent years, a large number of natural phosphorus compounds have been isolated from living organisms and significant advances have been made in understanding the effect of phosphates on prebiotic chemistry.
  • 2.9K
  • 23 Jun 2021
Topic Review
Thin-Layer Chromatography in the Screening of Botanicals
Thin-layer chromatography both in its standard (TLC) and high-performance (HPTLC) format is known as a versatile and high-throughput liquid chromatography technique, with a wide range of important applications. These applications can roughly be divided into those in direct service of life sciences (such as botany, phytochemistry and medicine, and handling rather fundamental issues such as contributing to chemotaxonomy of plants, or searching for enzyme inhibitor templates) and the more practical goals.
  • 2.9K
  • 19 Oct 2022
Topic Review
Seaweed Polysaccharide Based Products/Materials
Among the various natural polymers, polysaccharides are one of the oldest biopolymers present on the earth. They play a very crucial role in the survival of both animals and plants. Due to the presence of hydroxyl functional groups in most of the polysaccharides, it is easy to prepare their chemical derivatives. Several polysaccharide derivatives are widely used in a number of industrial applications. The polysaccharides such as cellulose, starch, chitosan, etc. have several industrial applications but due to some distinguished characteristic properties, seaweed polysaccharides are preferred in a number of applications.
  • 2.9K
  • 17 Sep 2021
Topic Review
Electrodermal Activity Data Collection
The electrodermal activity (EDA) signal is an electrical manifestation of the sympathetic innervation of the sweat glands. EDA has a history in psychophysiological (including emotional or cognitive stress) research since 1879, but it was not until recent years that researchers began using EDA for pathophysiological applications like the assessment of fatigue, pain, sleepiness, exercise recovery, diagnosis of epilepsy, neuropathies, depression, and so forth. The advent of new devices and applications for EDA has increased the development of novel signal processing techniques, creating a growing pool of measures derived mathematically from the EDA. For many years, simply computing the mean of EDA values over a period was used to assess arousal. Much later, researchers found that EDA contains information not only in the slow changes (tonic component) that the mean value represents, but also in the rapid or phasic changes of the signal. The techniques that have ensued have intended to provide a more sophisticated analysis of EDA, beyond the traditional tonic/phasic decomposition of the signal. With many researchers from the social sciences, engineering, medicine, and other areas recently working with EDA, it is timely to summarize and review the recent developments and provide an updated and synthesized framework for all researchers interested in incorporating EDA into their research.
  • 2.8K
  • 30 Oct 2020
Topic Review
Perezhivanie and Its Application
Perezhivanie is a concept that was originally defined by Vygotsky, but it did not become a part of educational theory until recently. Today the concept has been revived, and it is now used as a way to include emotional aspects into education and educational research. The concept also provides a rationale for describing and forming personalised learning.
  • 2.8K
  • 17 Jan 2022
Topic Review
Metal Current Collector for LMBs
Lithium Metal Anode (LMA) has been considered as the promising candidate, owing to their high theoretical gravimetric capacity, low electrochemical potential, and low density, to replace the conventional carbon based anode materials of lithium-ion batteries (LIBs). Unfortunately, the inherent hyperactive and volume expansion issues of Lithium (Li) leads to the formation of notorious Li dendrite growth and unstable solid-electrolyte-interphase (SEI), eventually hindering the practical application of lithium metal batteries (LMBs). To resolve this issue, one of the effective approach is to engineer three dimensional (3D) porous metal based Li host owing to their chemical and mechanical stability, high electronic conductivity and low cost. In this review, the challenges and strategies to suppress the Li dendrite growth are presented. Then the design principles and effectiveness of different kinds of metal based Li host to accommodate and buffer the volume expansion of Li for guiding the uniform Li deposition  are summarized. Then the special attention is paid to the lithiophilic coating or decoration which can further control the initial Li deposition and lowers the nucleation and voltage overpotential in 3D porous metal framework during Li plating/stripping cycles. Finally, the conclusion and perspective are given on the current status, challenges and future  research pathway toward advancement of LMA for dendrite-free and improved battery performance.
  • 2.8K
  • 28 Oct 2020
Topic Review
Recent Advances in A3 Coupling with Metal Salts
Recent advances in the metal salt catalysed multicomponent reaction of aldehydes, amines, and alkynes, known as A3 coupling, which yields propargylamines, a valuable organic scaffold.
  • 2.8K
  • 04 Jul 2022
Topic Review
Aromatic Water Pollutants
In recent years, the intensification of human activities including rapid urbanization, industrialization, population, and economic growth, led to an increase in waste production and energy demand. Most importantly such activities pose concerns for health, energy security and climate changes. Hazardous volatile organic compounds, VOC, and aromatic organic compounds, AOC, are being generated from the activities of many vital industries like mining and petrochemicals. They are instrumental in the economic growth of many countries and their products are regarded as privileges to modern communities. Nevertheless, they are toxic and carcinogenic thus, these wastes have been classified as “hazardous”. The simultaneous treatment of organic pollutants and energy recovery is an attractive solution to reduce pollution in water, air, and soil as well as provide alternative clean energy sources. Hydrogen could be generated from organic pollutants in water through photocatalysis. Photocatalysis refers to the oxidation and reduction, redox, reactions on semiconductor surfaces, mediated by the valence band holes and conduction band electrons, which are generated by the absorption of ultraviolet or visible light radiation. Compared to traditional oxidation processes, photocatalytic redox reaction operates at ambient conditions without a high temperature or high pressure, and many recalcitrant organic contaminants can be degraded without the addition of chemical oxidants, hence it is fully green process. Among the various photocatalysts, TiO2, as the most widely employed “golden” photocatalyst, has been largely used in photocatalysis, due to its chemical stability, nontoxicity, and low cost. In the last two decades, TiO2 photocatalysis has expanded very quickly, having undergone various development‐related energy issues and environmental issues, such as direct solar H2O splitting into H2 and the decomposition of pollutants in air and H2O at low concentrations. Although great progress has been made in TiO2 photocatalysis, much remains unknown, which raises an interesting challenge not only for engineers but also for basic scientists. a typical photocatalytic reaction in TiO2 photocatalysis contains many fundamental processes, including charge carrier formation, separation, relaxation, trapping, transfer, recombination, and transportation.
  • 2.8K
  • 24 May 2021
Topic Review
Melissa officinalis
Melissa officinalis is a medicinal plant rich in biologically active compounds which is used worldwide for its therapeutic effects. Chemical studies on its composition have shown that it contains mainly flavonoids, terpenoids, phenolic acids, tannins, and essential oil. The main active constituents of Melissa officinalis are volatile compounds (geranial, neral, citronellal and geraniol), triterpenes (ursolic acid and oleanolic acid), phenolic acids (rosmarinic acid, caffeic acid and chlorogenic acid), and flavonoids (quercetin, rhamnocitrin, and luteolin). 
  • 2.7K
  • 06 Apr 2022
Topic Review
Role of Naturally Occurring Coumarins in Plants
Coumarins are secondary plant metabolites widely distributed in higher plants, bacteria, fungi, and sponges. This great structural diversity of these natural compounds and their synthesized derivatives enables their wide range of pharmacological activities, such as antioxidant; antibacterial; antifungal; anti-human immunodeficiency infection; anti-tubercular; and anti-cancer activities. There are also many reports about their effectiveness against plant pathogenic pests (phytopathogenic fungi, bacteria, nematodes, and insects). 
  • 2.6K
  • 08 Jun 2023
Topic Review
Atomic Layer Deposition on 2D Materials
Atomic layer deposition (ALD) of high-κ dielectrics on two-dimensional (2D) materials (including graphene and transition metal dichalcogenides) still represents a challenge due to the lack of out-of-plane bonds on the pristine surfaces of 2D materials, thus making the nucleation process highly disadvantaged. The typical methods to promote the nucleation (i.e., the predeposition of seed layers or the surface activation via chemical treatments) certainly improve the ALD growth but can affect, to some extent, the electronic properties of 2D materials and the interface with high-κ dielectrics. Hence, direct ALD on 2D materials without seed and functionalization layers remains highly desirable. In this context, a crucial role can be played by the interaction with the substrate supporting the 2D membrane. In particular, metallic substrates such as copper or gold have been found to enhance the ALD nucleation of Al2O3 and HfO2 both on monolayer (1 L) graphene and MoS2. Similarly, uniform ALD growth of Al2O3 on the surface of 1 L epitaxial graphene (EG) on SiC (0001) has been ascribed to the peculiar EG/SiC interface properties.
  • 2.6K
  • 15 Dec 2021
  • Page
  • of
  • 15
Academic Video Service