Topic Review
Additives Used in Anaerobic Digestion
Anaerobic digestion involves the degradation of a biodegradable substance, such as sewage sludge by anaerobic microorganisms in an oxygen-free system.
  • 1.4K
  • 13 Mar 2023
Topic Review
Catalytic Pyrolysis of Plastic Waste
Plastic is a non-degradable material that can persist in the environment for long periods of time. On the other hand, it is a very special material with a great number of advantages: it is affordable, versatile, light, and resistant. Plastic originates from petrochemicals and contains mostly hydrocarbons and some additives, such as antioxidants, flame retardants, and stabilizers, which make the material very bio-undegradable. Pyrolysis can be thermal or catalytic. Thermal pyrolysis requires higher temperatures (from 350 to 900 °C), which can lead to a low molecular weight and low quality products. Gases evolved during pyrolysis have a high calorific value, and could be used in different gas machines and engines for the generation of electricity without any other treatments or modifications. The addition of catalysts overcomes the limitations of thermal pyrolysis, by reducing either the reaction temperature or the time. The addition of catalysts improves conversion, reduces activation energy of pyrolysis, and enhances the fuel quality. The most commonly used catalysts for the pyrolysis of plastics are zeolites, polyciliate components, and clays. Compared to thermal pyrolysis, the catalytic process has the advantage of a lower process temperature, a reduction of solid residues such as carbonized char and volatile fraction, shorter time process, high product selectivity, and high-octane-number products. Zeolite-based catalysts are the best option for the pyrolysis of plastic waste, and for co-pyrolysis of combined plastic waste/biomass.
  • 1.3K
  • 04 Jan 2023
Topic Review
Seaweed Cultivation and Its Applications in Colombia
Colombia has a diverse range of marine ecosystems in the coastal and insular areas of the Caribbean Sea and the Pacific Ocean. Seaweed research has focused mainly on the identification and taxonomic distribution of 628 species identified so far, mainly in the Caribbean Sea. Among the most widely cultivated genera of seaweeds in open-sea pilot systems in Colombia are Hydropuntia, Gracilaria, Hypnea, Kappaphycus, and Eucheuma. These genera have shown low yields as a consequence of high tissue fragility, epiphytism, sedimentation, and nitrogen deficiency. In addition, the evaluation of the biological activity of selected seaweed compounds has advanced considerably, focusing on their composition and their use for direct consumption by humans and animals. Despite the diversity of seaweeds, as well as certain technical and scientific advances, Colombia is still lagging behind other countries in seaweed exploitation, both in Latin America and worldwide.
  • 1.3K
  • 16 Feb 2022
Topic Review Video
Waste Plastic Pyrolytic Catalysis
With the increase in demand for plastic use, waste plastic (WP) management remains a challenge in the contemporary world due to the lack of sustainable efforts to tackle it. The increment in WPs is proportional to man’s demand and use of plastics, and these come along with environmental challenges. This increase in WPs, and the resulting environmental consequences are mainly due to the characteristic biodegradation properties of plastics. Landfilling, pollution, groundwater contamination, incineration, and blockage of drainages are common environmental challenges associated with WPs. The bulk of these WPs constitutes polyethene (PE), polyethene terephthalate (PET) and polystyrene (PS). Pyrolysis is an eco-friendly thermo-chemical waste plastic treatment solution for valuable product recovery, preferred over landfilling and incineration solutions.
  • 1.3K
  • 24 Apr 2022
Topic Review
H2S Removal from Gas Mixtures Using Zeolites
Natural gas, biogas, and refinery gas all include H2S, which has adverse effects not only on the environment and human health but also on the equipment and catalysts that are employed in the relevant processes. H2S is removed from the aforementioned gases using a variety of techniques in order to fulfill the necessary sales criteria and for reasons of safety. The adsorption method stands out among various other approaches due to its straightforward operation, high level of efficiency, and low overall cost. This technique makes use of a variety of adsorbents, such as metal-organic frameworks (MOFs), activated carbon, and zeolites. The use of zeolite-based adsorbents is by far the most common of these various types.
  • 1.3K
  • 12 Aug 2022
Topic Review
Zeolites as Carriers of Nano-Fertilizers
The world is facing immense challenges in terms of food security, due to the combined impacts of the ever-increasing population and the adversity of climate change. In an attempt to counteract these factors, smart nutrient delivery systems, including nano-fertilizers, additives, and material coatings, have been introduced to increase food productivity to meet the growing food demand. Use of nanocarriers in agro-practices for sustainable farming contributes to achieving up to 75% nutrient delivery for a prolonged period to maintain nutrient availability in soil for plants in adverse soil conditions.
  • 1.3K
  • 29 Sep 2022
Topic Review
Comprehensive Review on Wearable Sweat-Glucose Sensors for CGM
The incidence of diabetes is increasing at an alarming rate, and regular glucose monitoring is critical in order to manage diabetes. Currently, glucose in the body is measured by an invasive method of blood sugar testing. Blood glucose (BG) monitoring devices measure the amount of sugar in a small sample of blood, usually drawn from pricking the fingertip, and placed on a disposable test strip. Therefore, there is a need for non-invasive continuous glucose monitoring, which is possible using a sweat sensor-based approach.
  • 1.3K
  • 18 Jan 2022
Topic Review
Graphene-Based Membranes in Oil/Water Separation
Oily wastewaters, oil spills from the petroleum industry, and oil-shipping accidents have caused detrimental effects on aquatic ecosystems. Several methods were proposed by various number of studies to tackle oil spillage cleanups; these methods include absorption, dispersants, solidifiers, and controlled burning. Absorption is one of the most commonly used methods in the separation and recovery of spilled oil from water thanks to its good efficiency, simple operation, and flexibility to combine with other methods. Graphene has a large surface area, with a high chemical and thermal stability. It is an excellent adsorption material and has several applications in the field of oil spill cleanup and water purification processes.
  • 1.3K
  • 28 Feb 2022
Topic Review
Water-Soluble Vitamins
Vitamins are essential micronutrients in diets that ensure the biochemical functions of the human body and prevent diseases. They act as antioxidants, hormones, and mediators for cell signaling, cell/tissues regulators, and differentiation. They are sensitive compounds that are degraded during cooking and storage processes by factors such as light, heat, oxygen, moisture, pH, time, and reducing agents. Consequently, vitamin encapsulation can overcome limitations associated with external agents such as oxidants, heat, and low solubility, and promotes effective delivery into the body. Water-soluble and fat-soluble vitamins are two main groups of this type of micronutrient. Water-soluble vitamins are important for growth, development, and human body function. 
  • 1.3K
  • 23 May 2022
Topic Review
Diatom-Based Biosensors
Porous materials showing some useful transducing features, i.e., any changes in their physical or chemical properties as a consequence of molecular interaction, are very attractive in the realization of sensors and biosensors. Diatom frustules have been gaining support for biosensors since they are made of nanostructured amorphous silica, but do not require any nano-fabrication step; their surface can be easily functionalized and customized for specific application; diatom frustules are photoluminescent, and they can be found in almost every pond of water on the Earth, thus assuring large and low-cost availability.
  • 1.3K
  • 31 Mar 2021
Topic Review
Valorization of Bread Waste into Value-Added Products
Bread is a universal food that is sold and consumed across the entire social and geographical spectrum. Bread waste is currently of increasing interest, as it is considered a huge global issue with serious environmental impacts and significant economic losses that have become even greater in the post-pandemic years due to an increase in cereal prices, which has led to higher production costs and bread prices. Meanwhile, many efforts have been initiated in the past decades to investigate methods of repurposing bread residues into fuel and chemicals such as bioethanol, biohydrogen, succinic acid, and various added-value products that can be exploited in versatile industries.
  • 1.2K
  • 09 Dec 2022
Topic Review
Extraction and Purification of Volatile Fatty Acids
Volatile fatty acids (VFA) are intermediary degradation products during anaerobic digestion (AD) that are subsequently converted to methanogenic substrates, such as hydrogen (H2), carbon dioxide (CO2), and acetic acid (CH3COOH). VFA recovered from the AAD fermentation can be further converted to sustainable biofuels and bioproducts. This text describes the latest developments in the extraction techniques of VFA from complex organic materials.
  • 1.2K
  • 28 Jan 2023
Topic Review
Ethanol Production in Brazil
Ethanol production in Brazil started in the early 1930s due to laws created by the Brazilian government. However, ethanol production only increased significantly with the National Program of Ethanol implementation in 1975. This program was another action taken by the Brazilian government aiming to provide conditions for the development of the ethanol industry in the country. With the program, it was possible to achieve significant progress; however, it finished in the mid-1980s. Ethanol is produced on a large scale by more than 300 sugarcane mills all over the country. In 2016, the Brazilian government provided another incentive for ethanol production by creating the RenovaBio Program, which aimed to reduce greenhouse gas emissions. Besides the environmental aspect, Brazil's ethanol industry needs to develop to supply the future biofuel demand. According to the forecast and considering technical, economic, and environmental aspects regards the Brazilian ethanol industry, the current and only feedstock used has an excellent chance not to achieve necessary. Thus, the ethanol produced from corn by some facilities in the country would be an attractive secondary feedstock to complement sugarcane ethanol, the primary feedstock. 
  • 1.2K
  • 21 Feb 2023
Topic Review
Green Degumming Processes of Silk
Traditional textile degumming processes, including soap, alkali or both, could bring such problems as environmental damage, heavy use of water and energy, and damage to silk fibroin. The residual sericin may influence the molecular weight, structure, morphology and properties of silk fibroin, so that degumming of silk is important and necessary, not only in textile field but also in non-textile applications.
  • 1.2K
  • 14 Mar 2022
Topic Review
High Pressure Processing for Gelatinization and Nutrients Infusion
High pressure processing (HPP) is a novel technology that involves subjecting foods to high hydrostatic pressures of the order of 100–600 MPa. This technology has been proven successful for inactivation of numerous microorganisms, spores and enzymes in foods, leading to increased shelf life. HPP is not limited to cold pasteurization but has many other applications. The focus of this entry is to explore other applications of HPP, such as gelatinization, forced water absorption and infusion of nutrients. The use of high pressure in producing cold gelatinizing effects, imparting unique properties to food and improving food quality has also been discussed, highlighting the latest published studies and the innovative methods adopted.
  • 1.2K
  • 30 Nov 2021
Topic Review
Permeate flux prediction
In any membrane filtration, the prediction of permeate flux is critical to calculate the membrane surface required, which is an essential parameter for scaling-up, equipment sizing, and cost determination. Permeate flux prediction is an essential parameter in membrane performance evaluation and the projections for scaling-up from laboratory to the pilot plant or the industrial scale. 
  • 1.2K
  • 03 Jun 2021
Topic Review
Gamified Waste Management Tool
Waste management is an increasingly visible and essential element to functioning civilization. However, while the theory of waste management is studied widely, waste management remains for many a difficult concept to understand. There is an opportunity to create an informative, easy-to-use simulator to help all types of individuals build an understanding of waste management and to evaluate the impact of various changes on waste management performance, particularly in the context of gamified tools. 
  • 1.2K
  • 17 Feb 2022
Topic Review
Cellulose and Microfluidics
Cellulose, a linear polysaccharide, is the most common and renewable biopolymer in nature.
  • 1.2K
  • 10 Feb 2022
Topic Review
Donnan Membrane Process
Donnan membrane processes (DMPs) are driven by a potential gradient across an ion exchange membrane and have an advantage over fouling in conventional pressure driven membrane technologies, which are gaining attention. DMP is a removal, recovery and recycling technology that is commonly used for separation, purification and the concentrating of metals in different water and waste streams.
  • 1.2K
  • 01 Jun 2021
Topic Review
Surface-Functionalized Separator
The surface-modified separator plays a role in improving the electrolyte wettability, homogenizing Li+flux, and strengthening the mechanical/thermal property. Due to these favorable benefits, the formation of sharp Li dendrite is efficiently suppressed and the thermal stability of battery is greatly enhanced. In this article, separator-coating materials are classified into six categories in terms of material characteristics to show how each material has different electrochemical properties. We believe that the suggested approach would become a powerful strategy to improve the performance and stability of next-generation batteries such as lithium-metal batteries.
  • 1.2K
  • 23 Sep 2021
  • Page
  • of
  • 12
ScholarVision Creations