You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review Peer Reviewed
Conductive Heat Transfer in Thermal Bridges
A thermal bridge is a component of a building that is characterized by a higher thermal loss compared with its surroundings. Their accurate modeling is a key step in energy performance analysis due to the increased awareness of the importance of sustainable design. Thermal modeling in architecture and engineering is often not carried out volumetrically, thereby sacrificing accuracy for complex geometries, whereas numerical textbooks often give the finite element method in much higher generality than required, or only treat the case of uniform materials. Despite thermal modeling traditionally belonging exclusively to the engineer’s toolbox, computational and parametric design can often benefit from understanding the key steps of finite element thermal modeling, in order to inform a real-time design feedback loop. In this entry, these gaps are filled and the reader is introduced to all relevant physical and computational notions and methods necessary to understand and compute the stationary energy dissipation and thermal conductance of thermal bridges composed of materials in complex geometries. The overview is a self-contained and coherent expository, and both physically and mathematically as correct as possible, but intuitive and accessible to all audiences. Details for a typical example of an insulated I-beam thermal bridge are provided.
  • 3.1K
  • 26 May 2022
Topic Review
Chemical Structures and Characteristics of Blue Emitters
Organic light-emitting diodes (OLEDs) have outperformed conventional display technologies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a sizable fraction of the solid-state lighting industry. Blue emission is a crucial chromatic component for realizing high-quality red, green, blue, and yellow (RGBY) and RGB white display technologies and solid-state lighting sources. For consumer products with desirable lifetimes and efficiency, deep blue emissions with much higher power efficiency and operation time are necessary prerequisites.
  • 2.4K
  • 19 Oct 2023
Topic Review
Catalytic Mechanism of Photocatalysts Based on GCN Heterogeneous
In the current world situation, population and industrial growth have become major problems for energy and environmental concerns. Extremely noxious pollutants such as heavy metal ions, dyes, antibiotics, phenols, and pesticides in water are the main causes behind deprived water quality leading to inadequate access to clean water. In this connection, graphite carbon nitride (GCN or g-C3N4) a nonmetallic polymeric material has been utilized extensively as a visible-light-responsive photocatalyst for a variety of environmental applications.
  • 2.3K
  • 16 Jun 2022
Topic Review
Hard Carbons as Anodes in Sodium-Ion Batteries
Sodium-ion batteries (SIBs) are regarded as promising alternatives to lithium-ion batteries (LIBs) in the field of energy, especially in large-scale energy storage systems. Tremendous effort has been put into the electrode research of SIBs, and hard carbon (HC) stands out among the anode materials due to its advantages in cost, resource, industrial processes, and safety. However, different from the application of graphite in LIBs, HC, as a disordered carbon material, leaves more to be completely comprehended about its sodium storage mechanism, and there is still plenty of room for improvement in its capacity, rate performance and cycling performance.
  • 2.1K
  • 21 Oct 2022
Topic Review
Mechanism of Diffusion Bonding
Critical aspects of innovative design in engineering disciplines like infrastructure, transportation, and medical applications require the joining of dissimilar materials. Welding and brazing, while widely used, may pose challenges when joining materials with large differences in melting temperature and can lead to mechanical property degradation. In contrast, diffusion bonding offers a lower temperature process that relies on solid-state interactions to develop bond strength. The joining of tungsten and steel, especially for fusion reactors, presents a unique challenge due to the significant disparity in melting temperatures and the propensity to form brittle intermetallics. Here, diffusion characteristics of tungsten–steel interfaces are examined and the influence of bonding parameters on mechanical properties are investigated. Additionally, CALPHAD modeling is employed to explore joining parameters, thermal stability, and diffusion kinetics. The insights from this research can be extended to join numerous dissimilar materials for specific applications such as aerospace, automobile industry, power plants, etc., enabling advanced and robust design with high efficiency.
  • 2.0K
  • 17 Aug 2023
Topic Review
Bisphenol A in Related Pathological Conditions
Bisphenol A (BPA) is one of the so-called endocrine disrupting chemicals (EDCs) and is thought to be involved in the pathogenesis of different morbid conditions: immune-mediated disorders, type-2 diabetes mellitus, cardiovascular diseases, and cancer. 
  • 1.9K
  • 27 Mar 2023
Topic Review
Corrosion and Scaling in Geothermal Heat Exchangers
Geothermal power is an attractive and environmentally friendly energy source known for its reliability and efficiency. Unlike some renewables like solar and wind, geothermal energy is available consistently, making it valuable for mitigating climate change. Heat exchangers play a crucial role in geothermal power plants, particularly in binary cycle plants, where they represent a significant portion of capital costs. Protecting these components from deterioration is essential for improving plant profitability. Corrosion is a common issue due to direct contact with geothermal fluid, which can lead to heat exchanger failure.
  • 1.9K
  • 31 Oct 2023
Topic Review
Mechanism of Abrasive-Based Finishing Processes
Various manufacturing industries have been using conventional procedures for finishing the components, such as grinding, honing, lapping, etc., to get the machining components’ desired finishing. However, these conventional procedures of finishing are restricted to very few geometries and cannot work on complex and intricate geometries as well as complicated profiles for finishing of high level, which is required while the operation of the component is in process. These limitations and restrictions in the finishing process have led the industries to develop advanced finishing procedures, known as “Abrasive flow machining (AFM)”. Advances in technology and refinement of available computational resources paved the way for the extensive use of computers to model and simulate complex real-world problems difficult to solve analytically. The appeal of simulations lies in the ability to predict the significance of a change to the system under study. The simulated results can be of great benefit in predicting various behaviors, such as the wind pattern in a particular region, the ability of a material to withstand a dynamic load, or even the behavior of a workpiece under a particular type of machining. 
  • 1.9K
  • 29 Sep 2022
Topic Review
Nanomaterials for Industrial Wastewater Treatment
Industrial wastewater originating from various industries contributes as a major source of water pollution. This pollutant poses a severe threat to the environment. Recent years saw nanomaterials as a potential candidate for pollutants removal. Nowadays, a range of cost-effective nanomaterials is available with unique properties.
  • 1.9K
  • 22 Jul 2021
Topic Review
Hypopigmentation Mechanisms of Anti-Tyrosinase Peptides from Food Proteins
Skin hyperpigmentation resulting from excessive tyrosinase expression has long been a problem for beauty lovers, which has not yet been completely solved. Although researchers are working on finding effective tyrosinase inhibitors, most of them are restricted, due to cell mutation and cytotoxicity. Therefore, functional foods are developing rapidly for their good biocompatibility. Food-derived peptides have been proven to display excellent anti-tyrosinase activity, and the mechanisms involved mainly include inhibition of oxidation, occupation of tyrosinase’s bioactive site and regulation of related gene expression. For anti-oxidation, peptides can interrupt the oxidative reactions catalyzed by tyrosinase or activate an enzyme system, including super-oxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) to scavenge free radicals that stimulate tyrosinase. In addition, researchers predict that peptides probably occupy the site of the substrate by chelating with copper ions or combining with surrounding amino acid residues, ultimately inhibiting the catalytic activity of tyrosinase.
  • 1.9K
  • 06 May 2022
Topic Review
MXenes—A New Class of Two-Dimensional Materials
A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of research fields due to their exceptional properties. Despite the fact that this new family of 2D materials was discovered only about ten years ago, the number of scientific publications related to MXene almost doubles every year. Thus, in 2021 alone, more than 2000 papers are expected to be published, which indicates the relevance and prospects of MXenes. 
  • 1.8K
  • 28 Mar 2022
Topic Review
ODS FeCrAl Alloys
After the Fukushima nuclear accident, the development of new accident-tolerant fuel cladding materials has become a research hotspot around the world. Due to its outstanding corrosion resistance, radiation resistance, and creep properties at elevated temperatures, the oxide dispersion strengthened (ODS) FeCrAl alloy, as one of the most promising candidate materials for accident-tolerant fuel cladding, has been extensively studied during the past decade. In particular, the reasonable/optimized content of Cr is explained from the aspects of oxidation resistance, radiation resistance, and thermal stability. The essential role of the Al element in oxidation resistance, high-temperature stability, and workability was reviewed in detail. The roles of oxide-forming elements, i.e., Y (Y2O3), Ti, and Zr, and the solid solution strengthening element, i.e., W.
  • 1.8K
  • 01 Dec 2023
Topic Review
Shot Peening and Cavitation Peening
Shot peening is a dynamically developing surface treatment used to improve the surface properties modified by tool, impact, microblasting, or shot action.
  • 1.8K
  • 08 Apr 2022
Topic Review
Development of Fencing Blade Materials
Using two fencing swords manufactured in Europe and China, we investigated the typical materials used for fencing blades and compared the experimental results with the nominal compositions of a variety of steels. By combining the requirements for the safety of athletes, mechanical behaviors of different steels, and production costs for industry, there is possible directions for the heat treatments and processing methods that have the potential to enhance performance and overcome the limitations of previous materials. 
  • 1.7K
  • 17 Feb 2022
Topic Review
Particle-Bound Mercury Characterization
Particulate Bound Hg (PBM) consists of all airborne particulate containing Hg, including both stable condensed and gaseous forms adsorbed on atmospheric particulate matter (PM); it is operationally sampled and quantified by pulling air through a glass fiber or a quartz filter. PBM usually includes all those particles with a diameter <2.5 μm, even if its characterization depends on the pore size of the filter used for its collection. The accurate dimensional characterization is then essential to estimate the dry deposition of PBM, as well as any other particulate pollutant; the particles diameters directly influence gravitational sedimentation and the PBM residence time in the atmosphere. In addition, PBM chemical speciation, as well as for the other Hg forms, is fundamental to understand PBM bioavailability and therefore the effects on human .
  • 1.7K
  • 05 Jul 2021
Topic Review
Methods Used for the Degradation of Food Dyes
Dyes are widely used in various industries, including food, textile, pharmaceutics and cosmetic industries for the addition of color to products to make them more attractive for customers.
  • 1.7K
  • 16 Jun 2023
Topic Review
High Temperature Tribology
High temperature tribology is considered to begin from a minimum temperature of 300–350 °C, where organic base oils and polymers begin to decompose, until a temperature of 1000 °C. In this field of tribology, tests are typically run under dry or solid-state friction, unless a solid lubricant is used, since most lubricants will oxidize or break down when exposed to these extreme temperatures. Therefore, this form of tribotesting is useful to determine the friction, wear, and other tribological characteristics of coatings, ceramics, alloys, cermets, and similar materials.
  • 1.6K
  • 30 Apr 2021
Topic Review
Metal (Mo, W, Ti) Carbides for Dry Reforming
Dry reforming of hydrocarbons (DRH) is a pro-environmental method for syngas production. It owes its pro-environmental character to the use of carbon dioxide, which is one of the main greenhouse gases. Transition metal carbides (TMCs) can potentially replace traditional nickel catalysts due to their stability and activity in DR processes. 
  • 1.6K
  • 18 Jan 2022
Topic Review
Scanning Electrochemical Microscopy Applied to Metals and Coatings
Scanning electrochemical microscopy (SECM) is a scanning probe microscope (SPM) technique based on electrochemical principles that allows chemical imaging of materials with spatial resolution. The movement of a microelectrode (ME) in close proximity to the interface allows the application of various experimental procedures that can be classified into amperometric and potentiometric operations depending on either sensing faradaic currents or probe potential values due to concentration distributions resulting from the corrosion process, as sketched in. In addition, alternating current signals can be applied to the ME, leading to AC-operation modes.
  • 1.6K
  • 23 May 2022
Topic Review
Wire Arc Additive Manufacturing for Aluminum-Lithium Alloys
Out of all the metal additive manufacturing (AM) techniques, the directed energy deposition (DED) technique, and particularly the wire-based one, are of great interest due to their rapid production. In addition, they are recognized as being the fastest technique capable of producing fully functional structural parts, near-net-shape products with complex geometry and almost unlimited size. There are several wire-based systems, such as plasma arc welding and laser melting deposition, depending on the heat source. The main drawback is the lack of commercially available wire; for instance, the absence of high-strength aluminum alloy wires. Therefore, this entry covers conventional and innovative processes of wire production and includes a summary of the Al-Cu-Li alloys with the most industrial interest in order to foment and promote the selection of the most suitable wire compositions. The role of each alloying element is key for specific wire design in WAAM; this entry describes the role of each element (typically strengthening by age hardening, solid solution and grain size reduction) with special attention to lithium. At the same time, the defects in the WAAM part limit its applicability. For this reason, all the defects related to the WAAM process, together with those related to the chemical composition of the alloy, are mentioned. Finally, future developments are summarized, encompassing the most suitable techniques for Al-Cu-Li alloys, such as PMC (pulse multicontrol) and CMT (cold metal transfer).
  • 1.6K
  • 13 Mar 2023
  • Page
  • of
  • 6
Academic Video Service