Topic Review
Aprotinin for Influenza Treatment
Aprotinin (APR) was discovered in 1930. APR is an effective pan-protease inhibitor, a typical “magic shotgun”. Until 2007, APR was widely used as an antithrombotic and anti-inflammatory drug in cardiac and noncardiac surgeries for reduction of bleeding and thus limiting the need for blood transfusion. The ability of APR to inhibit proteolytic activation of some viruses leads to its use as an antiviral drug for the prevention and treatment of acute respiratory virus infections.
  • 323
  • 19 Jul 2023
Topic Review
Anti-Cancer Effect of Gypsogenin and Gypsogenic Acid
Gypsogenin possesses a versatile and unique aldehyde group that can be utilized to create covalent interactions with undruggable targets. Gypsogenin carboxamides have demonstrated high cytotoxic activity against breast and lung cancer. The bisamides of gypsogenic acid possess prominent activity as well; however, their anti-leukemic activity is yet to be explored.
  • 320
  • 08 Aug 2023
Topic Review
Polydynamic Biological Activity of Quercetin
Quercetin is one of those natural products. It belongs to the family of flavonoids and, more specifically, flavonols. Quercetin is an organic compound that belongs to the family of flavonoids, with a wide range of medical properties. Some of these include anti-allergy, anti-inflammatory, anticancer, anti-tumor, and antiviral properties as well as cardiovascular protection. It has also been found that quercetin plays a vital role in plants. Specifically, quercetin has antioxidant and antimicrobial activities, and as a result, it contributes to photosynthesis, growth, and seed germination. Moreover, the presence of quercetin in various regions of the brain contributes to combatting against various neurological diseases such as Alzheimer’s and Parkinson’s.
  • 315
  • 20 Dec 2023
Topic Review
2-Substituted Benzimidazoles as Photo-Protective Agents
The modern trend in sunscreen products is towards the development of UV filters with multi-functional properties, to provide a broad shielding against ultraviolet radiation, antioxidant activity, and the prevention of skin cancer. Additionally, they should also be safe for humans as well as the environment. The benzimidazole heterocycle is a suitable platform for the development of such multifunctional molecules with potential application in cosmetic formulations, due to their ability to act as both UV protectors and reactive pharmacophores. 
  • 308
  • 16 Dec 2023
Topic Review
Mannose Ligands for Mannose Receptor Targeting
The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. 
  • 308
  • 20 Feb 2024
Topic Review
Veratrum californicum Alkaloids as Hedgehog Pathway Antagonists
Veratrum californicum contains steroidal alkaloids that function as inhibitors of hedgehog (Hh) signaling, a pathway involved in the growth and differentiation of cells and normal tissue development. This same Hh pathway is abnormally active for cell proliferation in more than 20 types of cancer.
  • 294
  • 08 Feb 2024
Topic Review
Molecular Mechanisms of Gasotransmitter-Dependent Apoptosis in Internal Diseases
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear.
  • 292
  • 13 Apr 2023
Topic Review
Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases
Neglected tropical diseases (NTDs) are a significant global health problem. Additionally, anti-protozoan treatments are toxic, and their therapeutic regimens require prolonged treatment times and high concentrations of the drugs. Additionally, multi-resistant protozoan strains represent an important global emergency that must be addressed. For these reasons, global efforts are being made to identify new drug candidates that are capable of combating these kinds of diseases. This systematic review shows that 5-nitroimidazole derivatives have been successfully used against neglected tropical protozoan diseases (NTPDs), with a specific focus on three diseases: malaria, leishmaniasis, and human trypanosomiasis. Some nitroimidazole derivatives have been repurposed, and an important group of new drugs is available for the treatment of NTPDs. 
  • 290
  • 15 Apr 2024
Topic Review
Functionalized Calixarenes as Promising Antibacterial Drugs
Since the discovery of polyphenolic resins 150 years ago, the study of polymeric compounds named calix[n]arene has continued to progress, and those skilled in the art perfectly know now how to modulate this phenolic ring. Consequently, calix[n]arenes are now used in a large range of applications and notably in therapeutic fields. In particular, the calix[4]arene exhibits multiple possibilities for regioselective polyfunctionalization on both of its rims and offers researchers the possibility of precisely tuning the geometry of their structures. Thus, in the crucial research of new antibacterial active ingredients, the design of calixarenes finds its place perfectly. Out of all the work of the community, there are some excellent activities emerging that could potentially place these original structures in a very good position for the development of new active ingredients.
  • 289
  • 29 Dec 2023
Topic Review
The Medicinal Moroccan Plant Cladanthus arabicus
The yellow-flowering plant Cladanthus arabicus (L.) Cass., commonly called Arabian Cladanthus or palm springs daisy, is typical of the West Mediterranean region and is particularly abundant in Morocco. The plant is used in traditional Moroccan medicine for the treatment of diabetes and other ailments. Over the past 20 years, this abundant wild plant has been neglected from a phytochemical viewpoint.
  • 282
  • 01 Feb 2024
Topic Review
Radiolabeled Peptoids and Peptoid/Peptide Hybrids for Cancer-Targeted Imaging
Peptoids (N-substituted glycine oligomers) are a relatively new class of peptidomimetics, being highly versatile and capable of mimicking the architectures and the activities of the peptides but with a marked resistance to proteases and a propensity to cross the cellular membranes over the peptides themselves. For these properties, they have gained an ever greater interest in applications in bioengineering and biomedical fields.
  • 272
  • 30 Nov 2023
Topic Review
Biological Activity of the 3-Heteroaryl Fluoroquinolone Hybrids
There are promising studies in the area of 3-heteroaryl hybrids. The latter can be synthesized via different convinient methods with the formation of new derivatives with five-membered and fused heterocycles or creation of bis-fluoroquinolones with variable linking moieties. These novel compounds revealed not only good antimicrobial properties compared to the parent molecules but were also widely investigated as anticancer agents with promising activity.
  • 267
  • 19 Jun 2023
Topic Review
Optical Imaging for Nature of Cytosolic Iron Pools
The chemical nature of intracellular labile iron pools (LIPs) is described. By virtue of the kinetic lability of these pools, it is suggested that the isolation of such species by chromatography methods will not be possible, but rather mass spectrometric techniques should be adopted. Iron-sensitive fluorescent probes, which have been developed for the detection and quantification of LIP, are described, including those specifically designed to monitor cytosolic, mitochondrial, and lysosomal LIPs. The potential of near-infrared (NIR) probes for in vivo monitoring of LIP is discussed.
  • 266
  • 19 Sep 2023
Topic Review
Polyphenols against Adverse Effects of Antitumor Therapies
Polyphenolic compounds, encompassing flavonoids (e.g., quercetin, rutin, and cyanidin) and non-flavonoids (e.g., gallic acid, resveratrol, and curcumin), show several health-related beneficial effects, which include antioxidant, anti-inflammatory, hepatoprotective, antiviral, and anticarcinogenic properties, as well as the prevention of coronary heart diseases. Polyphenols have also been investigated for their counteraction against the adverse effects of common anticancer chemotherapeutics.
  • 243
  • 04 Feb 2024
Topic Review
Biological Activities of Ruthenium NHC Complexes
Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical properties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a variety of notable biological activities.
  • 235
  • 25 Sep 2023
Topic Review
Small Schiff Base Molecules
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored.
  • 219
  • 01 Mar 2024
Topic Review
Modeling for CADD with Small Molecules
COVID-19 has claimed around 7 million lives (from December 2019–November 2023) worldwide and continues to impact global health. SARS-CoV-2, the virus causing COVID-19 disease, is characterized by a high rate of mutations, which contributes to its rapid spread, virulence, and vaccine escape. While several vaccines have been produced to minimize the severity of the coronavirus, and diverse treatment regimens have been approved by the US FDA under Emergency Use Authorization (EUA), SARS-CoV-2 viral mutations continue to derail the efforts of scientists as the emerging variants evade the recommended therapies. Nonetheless, diverse computational models exist that offer an opportunity for the swift development of new drugs or the repurposing of old drugs. 
  • 218
  • 10 Jan 2024
Topic Review
Synergistic Effect of Nanoparticles
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation.
  • 218
  • 14 Jun 2024
Topic Review
The Mammalian Thioredoxin Reductase Probes
The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. The TrxR fluorescent probes have contributed significantly to the investigation of TrxR’s biological functions and have been valuable tools in TrxR-related research.
  • 208
  • 24 Aug 2023
Topic Review
Five-Membered Heterocycles in Human Histone Deacetylase Inhibitors
Five-membered heteroaromatic rings, in particular, have gained prominence in medicinal chemistry as they offer enhanced metabolic stability, solubility and bioavailability, crucial factors in developing effective drugs. The unique physicochemical properties and biological effects of five-membered heterocycles have positioned them as key structural motifs in numerous clinically effective drugs. 
  • 207
  • 08 Sep 2023
  • Page
  • of
  • 18
ScholarVision Creations