Topic Review
Obesity as A Cause of Cancer
Obesity is defined as the accumulation of an excessive amount of body fat. The correlation of obesity with increased cancer incidence and death has been well established. 
  • 1.3K
  • 03 Nov 2022
Topic Review
PH-Sensitive Cubosome Liquid Crystalline Nanocarriers
Cubosomes are soft biocontinuous nanoparticles whose 3D geometry can be engineered to render the structures responsive to pH variations, which is of large interest to the production of efficient drug delivery materials. We have reviewed the literature to provide a state of the art in this regard and shed lights on prominent perspectives and strategies for pH-sensitive cubosomes development, taking advantage of the pH changes of the biological media at targeted application sites.
  • 1.3K
  • 27 Oct 2020
Topic Review
Promising Lead Compounds for Resistant-Tuberculosis
According to WHO report, globally about 10 million active tuberculosis cases, resulting in about 1.6 million deaths, further aggravated by drug-resistant tuberculosis and/or comorbidities. Incomplete therapeutic regimen, meager dosing, and the capability of the latent and/or active state tubercular bacilli to abide and do survive against contemporary first-line and second-line antitubercular drugs escalate the prevalence of drug-resistant tuberculosis. To explore and identify the most potential antitubercular drug candidate among various reported compounds, here we focused to highlight the promising lead derivatives of isoniazid, coumarin, griselimycin, and antimicrobial peptides. The aim of the present review is to fascinate significant lead compounds in the development of potential clinical drug candidates that might be more precise and effective against drug-resistant tuberculosis, the world research looking for a long time.
  • 1.3K
  • 10 Dec 2020
Topic Review
Quiescent Cancer Cells
Quiescent cancer cells (QCCs) are cancer cells that are reversibly suspended in G0 phase with the ability to re-enter the cell cycle and initiate tumor growth, and, ultimately, cancer recurrence and metastasis.
  • 1.3K
  • 23 Mar 2021
Topic Review
Autothermal Thermophilic Aerobic Digestion
Pembroke JT and MP Ryan.  Autothermal thermophilic aerobic digestion (ATAD) is a microbial fermentation process characterized as a tertiary treatment of waste material carried out in jacketed reactors. Heat is generated which selects a thermoduric microbial population. The process results in a stabilised, pasteurised sludge suitable for land application as a fertiliser. The microbial population biodegrades sludge contents, are unique in terms of diversity and have biotechnological potential as enzymes and proteins associated with the microbial population are thermostable. 
  • 1.3K
  • 24 Dec 2021
Topic Review
Reactive Oxygen Species in Malaria Treatment
Malaria is a vector-transmitted parasite disease that continues to plague mankind. It is caused in humans by five main species of Plasmodium. The majority of conventional antimalarials kill parasites via direct or indirect overproduction of reactive oxygen species (ROS). Even when some parasites try to manage these ROS, over production of the ROS still leads to parasite death. This therefore underscores the role of ROS in the antiplasmodial activity of different antimalarials.
  • 1.3K
  • 04 Mar 2022
Topic Review
Antimetabolite Drug
Methotrexate (4-{N-[(2,4-diaminopteridin-6-yl) methyl]-N-methylamino} benzoyl)-L-glutamic acid, MTX) is an antimetabolite drug. It is widely used as a chemotherapeutic agent in rheumatoid arthritis (RA), psoriasis and some sorts of leukemia. MTX is a relatively well-known molecule and is a first-line antirheumatic medication because of its efficacy and safety. It decreases the concentration of tetrahydrofolate (THF) in the cells by the inhibition of dihydrofolate reductase (DHFR) enzyme, therefore it reduces the purine nucleotide and DNA synthesis.
  • 1.2K
  • 27 Oct 2020
Topic Review
Zika Virus
Zika virus (ZIKV) is an emergent arthropod-borne virus whose outbreak in Brazil has brought major public health problems. Infected individuals have different symptoms, including rash and pruritus, which can be relieved by the administration of antiallergics. In the case of pregnant women, ZIKV can cross the placenta and infect the fetus leading to congenital defects. We have identified that mast cells in the placentae of patients who had Zika during pregnancy can be infected. This led to our investigation on the possible role of mast cells during a ZIKV infection, using the HMC-1 cell line. We analyzed their permissiveness to infection, release of mediators and ultrastructural changes. Flow cytometry detection of ZIKV-NS1 expression 24h post infection in 45.3% of cells showed that HMC-1 cells are permissive to ZIKV infection. Following infection, β-hexosaminidase was measured in the supernatant of the cells with a notable release at 30 min. In addition, an increase in TNF-α, IL-6, IL-10 and VEGF levels were measured at 6h and 24h post infection. Lastly, different intracellular changes were observed in an ultrastructural analysis of infected cells. Our findings suggest that mast cells may represent an important source of mediators that can activate other immune cell types during a ZIKV infection, which has the potential to being a major contributor in the spread of the virus in cases of vertical transmission.
  • 1.2K
  • 30 Oct 2020
Topic Review
Haemophilus influenzae HP1 Bacteriophage
Haemophilus influenzae is an obligate commensal of the upper respiratory tract in humans and may be responsible for upper respiratory tract infections and even meningitis. Seven biologically active H. influenzae dsDNA phages have been currently described: HP1, HP2, HP3, S2A, S2B, S2C, N3 and Mu-like phage φflu. The most studied is the group of HP1/S2 phages. The temperate H. influenzae phage HP1 belongs to the Myoviridae family of phages and infects Rd strains of H. influenzae. HP1 has a head-tail structure. Its genome is about 32 kb long and encodes 41 potential proteins. Early promoters, which control the lysis-versus-lysogeny decision seem to be located toward the 5’ end of the genome. The late promoter is located between orf16 and orf17, and regulates the expression of late genes, including the lys and hol genes, encoding a SAR-endolysin and a pinholin. Endolysin alone is responsible for cell lysis. The control of endolysin activity seems to be related to conformational changes in holin structure. HP1 phages encodes Dam methyltransferase, which role in HP1 life cycle remains unknown.
  • 1.2K
  • 06 Nov 2020
Topic Review
Cu Homeostasis in Bacteria
Copper is an essential transition metal which is also toxic to cell.. Organisms have developed sophisticated pathways to import, traffic, store and deliver copper to cuproproteins. They also export its excess outsite of the cell to protect themselves from oxidative stress. The pathways contains specific importers, chaperons, storage proteins and exporters. Expression of the corresponding structural genes is conrolled by copper availability via sensors and response regulation transcription factors described below.
  • 1.2K
  • 08 Feb 2021
Topic Review
Hydrogen Peroxide
Hydrogen peroxide (H2O2) is an important oxidation molecule regulating aerobic metabolism. Redox signals include physiological oxidative stress (EU stress), and excessive oxidative stress can damage molecules. The main enzyme sources of H2O2 are nicotinamide adenine dinucleotide phosphate oxidase or NADPH oxidase (NOx), mitochondrial respiratory chain and various kinds of oxidase. NOx family consists of seven enzyme subtypes, which produce a superoxide anion (O2 -) which can be converted to H2O2 by superoxide dismutase or spontaneously. H2O2 passes through the membrane through some aquaporin (AQP), which is called porphyrin hydroperoxide. It diffuses in cells and tissues, triggering cellular effects such as proliferation, immune cell recruitment and morphological changes. 
  • 1.2K
  • 27 Jan 2022
Topic Review
G Protein-Coupled Receptor with the Aging-Related Mechanisms
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological, and also pathophysiological, process. G protein-coupled receptor 19 (GPR19), is a novel orphan GPCR that likely represents an important new target for novel remedial strategies for pathological disease conditions associated with aging-related cellular and tissue damage.
  • 1.2K
  • 16 Nov 2022
Topic Review
Astrocyte Pathology in Neurodevelopmental Disorders
The discovery in the last decade of unique astroglial features that include their role in synaptic plasticity and memory function has broadened and refurbished the conception of brain function in health and disease. Astrocytes are both necessary and sufficient for memory function, and contribute to the pathophysiology of cognitive and intellectual disability disorders such as Alzheimer’s disease, Fragile X syndrome (FXS), or Down syndrome (DS). We review some of the most relevant studies demonstrating that astrocytes are involved in the synaptic pathology of the two most common genetic forms of intellectual disability (FXS and DS).
  • 1.2K
  • 11 Dec 2020
Topic Review
Membrane Lipid Switches
Peripheral membrane proteins are required for signal propagation upon ligand-induced receptor activation at the plasma membrane. The translocation of this amphitropic peripheral proteins from or to the plasma membrane enables signal cascade propagation into the cells. This translocation greatly depends on the membrane’s lipid composition and, consequently, regulation of the lipid bilayer emerges as a novel therapeutic strategy. Indeed, relevant changes in membrane lipids can induce massive translocation of peripheral signaling proteins from or to the plasma membrane, which controls how cells behave. We called these changes “lipid switches”, as they alter the cell’s status (e.g., proliferation, differentiation, death, etc.) in response to the modulation of membrane lipids. This discovery enables therapeutic interventions focused on modifying the bilayer’s lipids, an approach known as membrane-lipid therapy (MLT) or melitherapy.
  • 1.2K
  • 28 Oct 2020
Topic Review
DNA Damage Response and COVID-19
COVID-19 is an infectious disease caused by the SARS-CoV-2 coronavirus and characterized by an extremely variable disease course, ranging from asymptomatic cases to severe illness. Our cells develop DNA lesions on a daily basis. These lesions can inhibit basic cellular processes, such as genome replication and transcription, and if they are not repaired properly, they could result in mutations or genome aberrations, thereby posing a threat to the cell or even to the viability of a particular organism.
  • 1.2K
  • 31 Oct 2022
Topic Review
BCR-ABL1 Tyrosine Kinase Complex Signaling Transduction
The constitutively active BCR-ABL1 tyrosine kinase, found in t(9;22)(q34;q11) chromosomal translocation-derived leukemia, initiates an extremely complex signaling transduction cascade that induces a strong state of resistance to chemotherapy. Targeted therapies based on tyrosine kinase inhibitors (TKIs), such as imatinib, dasatinib, nilotinib, bosutinib, and ponatinib, have revolutionized the treatment of BCR-ABL1-driven leukemia, particularly chronic myeloid leukemia (CML). However, TKIs do not cure CML patients, as some develop TKI resistance and the majority relapse upon withdrawal from treatment. Importantly, although BCR-ABL1 tyrosine kinase is necessary to initiate and establish the malignant phenotype of Ph-related leukemia, in the later advanced phase of the disease, BCR-ABL1-independent mechanisms are also in place. 
  • 1.2K
  • 09 Feb 2022
Topic Review
Telocytes
Telocytes/CD34+ stromal cells in the normal and pathological peripheral nervous system (PNS). We consider the following aspects: (A) general characteristics of telocytes; (B) the presence, characteristics and arrangement of telocytes in the normal PNS, including i) nerve epi-perineurium and endoneurium (e.g., telopodes extending into the endoneurial space); ii) sensory nerve endings (e.g., Meissner and Pacinian corpuscles, and neuromuscular spindles); iii) ganglia; and iv) the intestinal autonomic nervous system; (C) the telocytes in the pathologic PNS, encompassing (i) hyperplastic neurogenic processes (neurogenic hyperplasia of the appendix and gallbladder), highly demonstrative of telocyte characteristics and relations, (ii) PNS tumours, such as neurofibroma, schwannoma and granular cell tumour. 
  • 1.2K
  • 26 Oct 2020
Topic Review
AB5 Derivatives of Cyclotriphosphazene
AB5 compounds issued from the reactivity of hexachlorocyclotriphosphazene are relatively easy to obtain using two ways: either first the reaction of one chloride with one reagent, followed by the reaction of the five remaining Cl with another reagent, or first the reaction of five chlorides with one reagent, followed by the reaction of the single remaining Cl with another reagent. This particular property led to the use of such compounds as core for the synthesis of dendrons (dendritic wedges), using the five functions for growing the dendritic branches. The single function can be used for the synthesis of diverse types of dendrimers (onion peel, dumbbell-shape, Janus), for covalent or non-covalent grafting to solid surfaces, providing nanomaterials, for grafting a fluorophore, especially for studying biological mechanisms, or for self-associations to get micelles.
  • 1.2K
  • 04 Aug 2021
Topic Review
Homologous Recombination Deficiency
The Homologous Recombination Deficiency (HRD) phenotype makes these tumors sensitive to DNA double strand break-inducing agents, including poly-(ADP-ribose)-polymerase (PARP) inhibitors.
  • 1.2K
  • 17 Jun 2021
Topic Review
Osteoclast Multinucleation
       Osteoclasts  are derived from hemopoietic progenitors of the monocyte-macrophage lineage. They differentiate upon exposure to macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), which are presented by osteoblasts and osteocytesare. Multinucleation in a late phase of osteoclastogenesis is a hallmark of osteoclast maturation. The unique and dynamic multinucleation process not only increases cell size but causes functional alterations through reconstruction of the cytoskeleton, creating the actin ring and ruffled border that enable efficient bone resorption.  The process of osteoclast multinucleation is dynamic, complicated and finely controlled by multiple entangled factors. At the beginning of the 21st century, two master fusogens, DC-STAMP and OC-STAMP, had been identified that directly regulate osteoclast multinucleation.
  • 1.2K
  • 17 Aug 2020
  • Page
  • of
  • 133
ScholarVision Creations