You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
DNA Damage Response and COVID-19
COVID-19 is an infectious disease caused by the SARS-CoV-2 coronavirus and characterized by an extremely variable disease course, ranging from asymptomatic cases to severe illness. Our cells develop DNA lesions on a daily basis. These lesions can inhibit basic cellular processes, such as genome replication and transcription, and if they are not repaired properly, they could result in mutations or genome aberrations, thereby posing a threat to the cell or even to the viability of a particular organism.
  • 2.1K
  • 31 Oct 2022
Topic Review
Biosynthesis of Lasso Peptides
Lasso peptides are a subclass of ribosomally synthesized and post-translationally modified peptides (RiPPs) and feature the threaded, lariat knot-like topology. The basic post-translational modifications (PTMs) of lasso peptide contain two steps, including the leader peptide removal of the ribosome-derived linear precursor peptide by an ATP-dependent cysteine protease, and the macrolactam cyclization by an ATP-dependent macrolactam synthetase.
  • 2.1K
  • 26 Jul 2022
Topic Review
Heat Shock Proteins
The heat shock proteins (HSPs), are a family of proteins that have been linked to different cellular functions, being activated under conditions of cellular stress, not only imposed by thermal variation but also toxins, radiation, infectious agents, hypoxia, etc. Regarding pathological situations as seen in cardiorenal syndrome (CRS), HSPs have been shown to be important mediators involved in the control of gene transcription and intracellular signaling, in addition to be an important connector with the immune system. Thus, HSPs have been targeted by researchers as important connectors between kidney and heart.
  • 2.1K
  • 26 Nov 2021
Topic Review
Synthesis of Ilamycins/Rufomycins and Cyclomarins
Ilamycins/rufomycins and cyclomarins are marine cycloheptapeptides containing unusual amino acids. Produced by Streptomyces sp., these compounds show potent activity against a range of mycobacteria, including multidrug-resistant strains of Mycobacterium tuberculosis. The cyclomarins are also very potent inhibitors of Plasmodium falciparum. Biosynthetically the cyclopeptides are obtained via a heptamodular nonribosomal peptide synthetase (NRPS) that directly incorporates some of the nonproteinogenic amino acids. A wide range of derivatives can be obtained by fermentation, while bioengineering also allows the mutasynthesis of derivatives, especially cyclomarins. Other derivatives are accessible by semisynthesis or total synthesis, reported for both natural product classes.
  • 2.1K
  • 03 Sep 2021
Topic Review
3D-LC
Three-dimensional liquid chromatography (3D-LC) is the consecutive combination of 3 independent LC techniques to decrease the complexity of proteome digest samples. 3D-LC systems can be performed in an online or offline manner. Ideally, each dimension in a 3D-LC system is completely orthogonal to the others.
  • 2.1K
  • 27 Oct 2020
Topic Review
Pullulan-Degrading Enzymes
Starch and pullulan degrading enzymes are essential industrial biocatalysts. Pullulan-degrading enzymes are grouped into pullulanases (types I and type II) and pullulan hydrolase (types I, II and III).
  • 2.1K
  • 04 Mar 2022
Topic Review
Microbial Enzyme Applied to Plastic Depolymerization
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. 
  • 2.1K
  • 28 Feb 2023
Topic Review
Glutamine in brain cancer metabolism
Glutamine is a non-essential amino acid that plays a key role in the metabolism of proliferating cells including neoplastic cells. In the central nervous system (CNS), glutamine metabolism is particularly relevant, because the glutamine–glutamate cycle is a way of controlling the production of glutamate-derived neurotransmitters by tightly regulating the bioavailability of the amino acids in a neuron-astrocyte metabolic symbiosis-dependent manner. Glutamine-related metabolic adjustments have been reported in several CNS malignancies including malignant gliomas that are considered ‘glutamine addicted’. In these tumors, glutamine becomes an essential amino acid preferentially used in energy and biomass production including glutathione (GSH) generation, which is crucial in oxidative stress control. Therefore, in this review, we will highlight the metabolic remodeling that gliomas undergo, focusing on glutamine metabolism. We will address some therapeutic regimens including novel research attempts to target glutamine metabolism and a brief update of diagnosis strategies that take advantage of this altered profile. A better understanding of malignant glioma cell metabolism will help in the identification of new molecular targets and the design of new therapies.
  • 2.1K
  • 26 Oct 2020
Topic Review
Actin Bundles
Actin is one of the key and highly conserved elements of the cytoskeleton. It is indispensable for driving many cellular processes, including cell migration, cytokinesis, vesicle transport, and contractile force generation. To perform diverse functions, actin filaments assemble into higher-order structures such as branched actin networks and actin bundles. This entry describes different types of actin bundles present in cells, their locations, and the bundling proteins involved in their formation.
  • 2.1K
  • 13 Mar 2023
Topic Review
Silk Fibroin as Contact Lenses
Fibroin is a fibrous protein that can be conveniently isolated from the silk cocoons produced by the larvae of Bombyx mori silk moth. In its form as a hydrogel, Bombyx mori silk fibroin (BMSF) has been employed in a variety of biomedical applications. When used as substrates for biomaterial-cells constructs in tissue engineering, the oxygen transport characteristics of the BMSF membranes have proved so far to be adequate. However, over the past three decades the BMSF hydrogels have been proposed episodically as materials for the manufacture of contact lenses, an application that depends on substantially elevated oxygen permeability.
  • 2.1K
  • 26 May 2021
Topic Review
Colorectal Cancer Cells
The majority of deaths related to colorectal cancer (CRC) are associated with the metastatic process. Alternative therapeutic strategies, such as traditional folk remedies, deserve attention for their potential ability to attenuate the invasiveness of CRC cells. The aim of this study is to investigate the biological activity of brown Cuban propolis (CP) and its main component nemorosone (NEM) and to describe the molecular mechanism(s) by which they inhibit proliferation and metastatic potential of 2 CRC cell lines. CP and NEM significantly decreased cell viability and inhibited clonogenic capacity of CRC cells in a dose and time-dependent manner, by arresting the cell cycle in the G0/G1 phase and inducing apoptosis. Furthermore, CP and NEM downregulated BCL2 gene expression and upregulated the expression of the proapoptotic genes TP53 and BAX, with a consequent activation of caspase 3/7. They also attenuated cell migration and invasion by inhibiting MMP9 activity, increasing E-cadherin and decreasing β-catenin and vimentin expression, proteins involved in the epithelial–mesenchymal transition (EMT). NEM, besides displaying antiproliferative activity on CRC cells, is able to decrease their metastatic potential by modulating EMT-related molecules. These findings provide new insights about the antitumoral properties of CP, due to NEM content.  
  • 2.1K
  • 01 Nov 2020
Topic Review
Unqiue Hyaluronic Acid
Hyaluronic acid (also known as sodium hyaluronate or hyaluronan) is a straight-chain, natural polysaccharide and the only nonsulfated GAG composed of alternating (1–4)-β d-glucuronic and (1–3)-β N-acetyl-d-glucosamine units. Both carbohydrate units are spatially related to glucose; therefore, in the β-configuration, it is possible for all their bulky groups (hydroxyl and carboxyl groups and the anomeric carbon on the neighboring sugar) to be in sterically favorable planes, while all the small hydrogen atoms occupy less sterically favorable axial positions. This chemical structure of HA is energetically very stable because of interactions between hydrophobic and intermolecular hydrogen bonds and the acetamide and carboxylate groups.
  • 2.1K
  • 12 May 2022
Topic Review
ASIA Syndrome
Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) was first introduced in 2011 by Shoenfeld et al. and encompasses a cluster of related immune mediated diseases, which develop among genetically prone individuals as a result of adjuvant agent exposure.
  • 2.1K
  • 20 Feb 2021
Topic Review
IRDS Genes: Interfaces and Pathways
Interferon (IFN)-related DNA damage resistant signature (IRDS) genes are a subgroup of interferon-stimulated genes (ISGs) found upregulated in different cancer types, which promotes resistance to DNA damaging chemotherapy and radiotherapy.
  • 2.1K
  • 27 Apr 2021
Topic Review
Quantum Biology
Recent evidence suggests that a broad range of complex and dynamic processes in living systems could exploit quantum effects to enhance and/or regulate biological functions. These non-trivial quantum effects may play a crucial role in maintaining the non-equilibrium state of biomolecular systems so as to achieve biological advantages that cannot be understood within the boundaries of classical physics. Quantum biology is the study of such quantum aspects of living systems. 
  • 2.1K
  • 24 Mar 2021
Topic Review
PARP Inhibitor-Induced Synthetic Lethality
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the poly-ADP ribose polymerase 1 (PARP) inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. In the most common aspect of precision medicine, PARPi triggers synthetic lethality in cancer cells harboring BRCA1/2 mutations/deficiencies. 
  • 2.1K
  • 05 Dec 2022
Topic Review
The Plant Response to Mechanical Stress
Mechanical stimuli, together with the corresponding plant perception mechanisms and the finely tuned thigmomorphogenetic response, has been of scientific and practical interest since the mid-17th century. As an emerging field, there are many challenges in the research of mechanical stress. Indeed, studies on different plant species (annual/perennial) and plant organs (stem/root) using different approaches (field, wet lab, and in silico/computational) have delivered insufficient findings that frequently impede the practical application of the acquired knowledge. 
  • 2.0K
  • 21 Feb 2023
Topic Review
List of Protein Subcellular Localization Prediction Tools
This list of protein subcellular localisation prediction tools includes software, databases, and web services that are used for protein subcellular localization prediction. Some tools are included that are commonly used to infer location through predicted structural properties, such as signal peptide or transmembrane helices, and these tools output predictions of these features rather than specific locations. These software related to protein structure prediction may also appear in lists of protein structure prediction software.
  • 2.0K
  • 18 Oct 2022
Topic Review
Peroxisome Proliferator-activated Receptors
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert important functions in mediating the pleiotropic effects of diverse exogenous factors such as  physical exercise and food components. Particularly, PPARs act as transcription factors that control the expression of genes implicated in lipid and glucose metabolism, and cellular proliferation and  differentiation.  In this review, we aimed to summarize recent advancements reported on the effects of lifestyle and food habits on PPAR transcriptional activity.
  • 2.0K
  • 30 Oct 2020
Topic Review
Delivery Platforms for miRNA-Based Cancer Therapeutics
Restoration of microRNA (miRNA) expression or downregulation of aberrantly expressed miRNAs using miRNA mimics or anti-miRNA inhibitors (anti-miRs/antimiRs), respectively, continues to show therapeutic potential for the treatment of cancer. Although the manipulation of miRNA expression presents a promising therapeutic strategy for cancer treatment, it is predominantly reliant on nucleic acid-based molecules for their application, which introduces an array of hurdles, with respect to in vivo delivery. Because naked nucleic acids are quickly degraded and/or removed from the body, they require delivery vectors that can help overcome the many barriers presented upon their administration into the bloodstream.
  • 2.0K
  • 25 Aug 2022
  • Page
  • of
  • 133
Academic Video Service