Topic Review
Intelligent Hydrogels in Myocardial Engineering
Hydrogels are water-enriched polymeric biomaterials used as scaffolds that mimic the extracellular matrix and are employed in various tissue engineering applications. Interestingly, the hydrogels can be tuned by altering the functional groups of the parent polymeric backbone, resulting in structural rearrangements depending on the physiochemical alterations in the surrounding medium and forming intelligent/smart/stimuli-responsive hydrogels. Myocardial infarction (MI) causes impaired cardiac function due to the loss of cardiomyocytes following an ischemic attack. Intelligent hydrogels offer promising solutions for post-MI cardiac tissue therapy to aid in structural support, contractility, and targeted drug therapy. Hydrogels are porous hydrophilic matrices used for biological scaffolding, and upon the careful alteration of ideal functional groups, the hydrogels respond to the chemistry of the surrounding microenvironment, resulting in intelligent hydrogels.
  • 663
  • 21 Sep 2022
Topic Review
Functional Nucleic-Acid Biosensors
According to the latest Global Cancer Statistics, there are about 19.3 million new cancer cases worldwide and nearly 10 million people died of cancer in 2020. As the largest threat to human life, the early detection of cancer is an effective way to reduce its mortality. In addition, heavy metal poisoning and biological toxins also seriously endanger human health, and their detection methods still have some shortcomings. Against this backdrop, biosensors have been developed by integrating modern biotechnology and advanced physical technology. Biosensors are devices that are used for the rapid and sensitive detection of substances at the molecular level. The basic unit of the biosensor includes the identification element, transducer and detector, etc. The components of organisms with molecular recognition capabilities or the organism itself can be used as recognition elements.
  • 662
  • 27 Nov 2021
Topic Review
Impedimetric Sensing
The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and requires specialized equipment and reagents to be performed correctly. This make it unsuitable for widespread, rapid testing and causes poor individual and policy decision-making. Rapid antigen tests (RATs) are a widely used alternative that provide results quickly but have low sensitivity and are prone to false negatives, particularly in cases with lower viral burden. Electrochemical sensors have shown much promise in filling this technology gap, and impedance spectroscopy specifically has exciting potential in rapid screening of COVID-19. Due to the data-rich nature of impedance measurements performed at different frequencies, this method lends itself to machine-leaning (ML) algorithms for further data processing.
  • 662
  • 16 Feb 2023
Topic Review
Wearable Bluetooth Triage Healthcare Monitoring System
Triage is the first interaction between a patient and a nurse/paramedic. This assessment, usually performed at Emergency departments, is a highly dynamic process and there are international grading systems that according to the patient condition initiate the patient journey. Triage requires an initial rapid assessment followed by routine checks of the patients’ vitals, including respiratory rate, temperature, and pulse rate. Ideally, these checks should be performed continuously and remotely to reduce the workload on triage nurses; optimizing tools and monitoring systems can be introduced and include a wearable patient monitoring system that is not at the expense of the patient’s comfort and can be remotely monitored through wireless connectivity.
  • 662
  • 14 Apr 2022
Topic Review
Hydrogel-Based Bone-On-Chips
The recent development of bone-on-chips (BOCs) holds the main advantage of requiring a low quantity of cells and material, compared to traditional In Vitro models. By incorporating hydrogels within BOCs, the culture system moved to a three dimensional culture environment for cells which is more representative of bone tissue matrix and function. The fundamental components of hydrogel-based BOCs, namely the cellular sources, the hydrogel and the culture chamber, have been tuned to mimic the hematopoietic niche in the bone aspirate marrow, cancer bone metastasis and osteo/chondrogenic differentiation.
  • 660
  • 19 May 2021
Topic Review
Field-Effect Sensors Using Biomaterials
Field-effect sensors using biomaterials that are able to detect specific target chemical substances with high sensitivity would have broad applications in many areas, ranging from biomedicine and environments to the food industry, but this has proved extremely challenging.
  • 660
  • 07 Jan 2022
Topic Review
Carbon Nanomaterials for Electro-Active Structures
The use of electrically conductive materials to impart electrical properties to substrates for cell attachment, proliferation and differentiation, represents an important strategy in the field of tissue engineering. Carbon nanomaterials have great potential for fabricating electro-active structures due to their exceptional electrical and surface properties, opening new routes for more efficient tissue engineering approaches. The concept of electro-active structures and their roles in tissue engineering is discussed in this review, the most relevant carbon-based nanomaterials used to produce electro-active structures are presented. Particular emphasis is put on the electrically conductive property, material synthesis and their applications on tissue engineering. Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures in a controlled way, are also presented. Finally, challenges for future research are highlighted. 
  • 645
  • 18 Dec 2020
Topic Review
Organ on Chip Technology to Cancer
Organ on chip (OOC) has emerged as a major technological breakthrough and distinct model system revolutionizing biomedical research and drug discovery by recapitulating the crucial structural and functional complexity of human organs in vitro. OOC are rapidly emerging as powerful tools for oncology research. Indeed, Cancer on chip (COC) can ideally reproduce certain key aspects of the tumor microenvironment (TME), such as biochemical gradients and niche factors, dynamic cell–cell and cell–matrix interactions, and complex tissue structures composed of tumor and stromal cells.
  • 643
  • 24 Jan 2022
Topic Review
Computational Modeling of Reverse Total Shoulder Arthroplasty
Reverse total shoulder arthroplasty (RTSA) is an established treatment for elderly patients with irreparable rotator cuff tears, complex proximal humerus fractures, and revision arthroplasty. Computational modeling has been used to investigate the effects of implant design, intraoperative component placement, and surgical technique on postoperative shoulder biomechanics after RTSA, with the findings ultimately used to elucidate and mitigate complications.
  • 642
  • 02 Dec 2021
Topic Review
Smart Packaging and Returns Assessment System
Medicine waste is a global issue, with economic, environmental, and social consequences that are only predicted to worsen. To address a lack of technological advancements to enable medicine reuse a Smart Packaging and Returns Assessment System (SPaRAS) was proposed to validate the storage conditions and streamline the assessment of returned medicines. The Smart Packaging System (SPS) will record the storage conditions of medication while in patient care. The companion Returns Assessment System (RAS) will efficiently communicate with the SPS through RFID, configure the sensors within the SPS to the needs of its assigned medicine and assess the returns against tailored eligibility criteria. The increased safety and efficiency provided by SPaRAS addresses the concerns of large pharmaceutical companies and the public, offering a method to reuse previously owned medication and reduce the effects of unnecessary medicine waste.
  • 641
  • 26 Jun 2023
Topic Review
Lung Cancer: Nodule-Focused Computer-Aided Decision Systems
The computer-aided decision (CAD) systems centered on the nodule represent the first approach dedicated to lung cancer, following the clinical proceedings, by only taking into consideration the imaging findings presented by the nodule region for the assessment. These systems comprise the detection of all possible nodule candidates and margin segmentation, followed by the stratification of the malignancy risk in order to support the clinicians.
  • 638
  • 22 Apr 2022
Topic Review
Sperm Selection
Sperm selection is a clinical need for guided fertilization in men with low-quality semen. In this regard, microfluidics can provide an enabling platform for the precise manipulation and separation of high-quality sperm cells through applying various stimuli, including chemical agents, mechanical forces, and thermal gradients. In addition, microfluidic platforms can help to guide sperms and oocytes for controlled in vitro fertilization or sperm sorting using both passive and active methods.
  • 637
  • 15 Jun 2021
Topic Review
Ionic liquids and Biorefineries Design
A brief overview of the increasing applicability of Process Systems Engineering (PSE) tools in two research areas, which are the design of ionic liquids and the design of integrated biorefineries, is presented. The development and advances of novel computational tools and optimization approaches in recent years have enabled these applications with practical results. A general introduction to ionic liquids and their various applications is presented followed by the major challenges in the design of optimal ionic liquids. Significant improvements in computational efficiency have made it possible to provide more reliable data for optimal system design, minimize the production cost of ionic liquids, and reduce the environmental impact caused by such solvents. A review of the recent developments in PSE applications in the field of integrated biorefineries is then presented. Various value-added products could be processed by the integrated biorefinery aided with applications of PSE tools with the aim of enhancing the sustainability performance in terms of economic, environmental, and social impacts. The application of molecular design tools in the design of integrated biorefineries is also highlighted. Major developments in the application of ionic liquids in integrated biorefineries have been emphasized. This paper is concluded by highlighting the major opportunities for further research in these two research areas and the areas for possible integration of these research fields.
  • 635
  • 08 Jan 2021
Topic Review
Microfluidic-Based Oxygen Sensors
Oxygen (O2) quantification is essential for assessing cell metabolism, and its consumption in cell culture is an important indicator of cell viability. Recent advances in microfluidics have made O2 sensing a crucial feature for organ-on-chip (OOC) devices for various biomedical applications. OOC O2 sensors can be categorized, based on their transducer type, into two main groups, optical and electrochemical.
  • 635
  • 28 Jan 2022
Topic Review
Additive Manufacturing to Reproduce Atherosclerotic Blood Vessels
Physical biomodels mimicking atherosclerotic blood vessels could be an interesting tool to be applied in personalized surgical planning and even for surgeons' trainning. In this context, additive manufacturing (AM), commonly known as 3D printing, has attracted significant attention due to the potential to fabricate biomodels rapidly. However, the production of such models first requires a consensual and definitive evaluation of the mechanical properties of healthy and atherosclerotic blood vessels, to acuuratey select the adequate "printable" materials. 
  • 634
  • 13 Feb 2023
Topic Review
Peroxidase Mimetic Nanozymes in Cancer
Peroxidase (POD) mimetic nanozymes converts endogenous H2O2 to water (H2O) and reactive oxygen species (ROS) in a hypoxic tumor microenvironment is a fascinating approach.
  • 631
  • 31 Aug 2021
Topic Review
Swallow Detection with Acoustics and Accelerometric-Based Wearable Technology
Swallowing disorders, especially dysphagia, might lead to malnutrition and dehydration and could potentially lead to fatal aspiration. Benchmark swallowing assessments, such as videofluoroscopy or endoscopy, are expensive and invasive. Wearable technologies using acoustics and accelerometric sensors could offer opportunities for accessible and home-based long-term assessment. Identifying valid swallow events is the first step before enabling the technology for clinical applications. 
  • 630
  • 09 Jan 2023
Topic Review
Technology for Measuring Vital Signs
Human vital signs such as temperature, breathing rate (BR), heart rate (HR), heart rate variability (HRV), blood oxygen saturation (SpO2), and blood pressure (BP) indicate human state of health to a large extent. COVID-19 effects on vital signs, as shown above, are significant on cardiorespiratory state and temperature. Certain other characteristics such as coughing and conjunctivitis are clearly detectable by video camera under the right circumstances, while being difficult to detect remotely using non-imaging technology. Coughing can be detected acoustically.
  • 627
  • 14 Apr 2022
Topic Review
Micro-Engineered Kidney, Liver, and Respiratory System Models
Developing novel drug formulations and progressing them to the clinical environment relies on preclinical in vitro studies and animal tests to evaluate efficacy and toxicity. However, these current techniques have failed to accurately predict the clinical success of new therapies with a high degree of certainty. The main reason for this failure is that conventional in vitro tissue models lack numerous physiological characteristics of human organs, such as biomechanical forces and biofluid flow. Moreover, animal models often fail to recapitulate the physiology, anatomy, and mechanisms of disease development in human. These shortfalls often lead to failure in drug development, with substantial time and money spent. To tackle this issue, organ-on-chip technology offers realistic in vitro human organ models that mimic the physiology of tissues, including biomechanical forces, stress, strain, cellular heterogeneity, and the interaction between multiple tissues and their simultaneous responses to a therapy. For the latter, complex networks of multiple-organ models are constructed together, known as multiple-organs-on-chip. Numerous studies have demonstrated successful application of organ-on-chips for drug testing, with results comparable to clinical outcomes.
  • 627
  • 21 Apr 2022
Topic Review
Non-Contact Video-Based Neonatal Respiratory Monitoring
Video-based monitoring is a potential non-contact system that could improve patient care. This iterative design study developed a novel algorithm that produced RR from footage analyzed from stable NICU patients in open cribs with corrected gestational ages ranging from 33 to 40 weeks. The final algorithm used a proprietary technique of micromotion and stationarity detection (MSD) to model background noise to be able to amplify and record respiratory motions. We found significant correlation—r equals 0.948 (p value of 0.001)—between MSD and the current hospital standard, electrocardiogram impedance pneumography. Our video-based system showed a bias of negative 1.3 breaths and root mean square error of 6.36 breaths per minute compared to standard continuous monitoring. Further work is needed to evaluate the ability of video-based monitors to observe clinical changes in a larger population of patients over extended periods of time.
  • 625
  • 26 Oct 2020
  • Page
  • of
  • 27
ScholarVision Creations