Topic Review
Smartwatches and Heart Rate Variability in Stress Management
In the modern world, stress has become a pervasive concern that affects individuals’ physical and mental well-being. To address this issue, many wearable devices have emerged as potential tools for stress detection and management by measuring heart rate, heart rate variability (HRV), and various metrics related to it. 
  • 457
  • 28 Sep 2023
Topic Review
Association between Periodontitis and Peri-Implantitis
Dental implants to replace lost teeth are a common dentistry practice nowadays. Titanium dental implants display a high success rate and improved safety profile. Nevertheless, there is an increasing peri-implantitis (PI), an inflammatory disease associated with polymicrobial infection that adversely affects the hard and soft tissues around the implant. Studies have demonstrated that oral microbiota (microorganisms residing in the oral cavity collectively known as oral microbiota) associated with periodontitis (PE) is involved in the infections related to PI, indicating a common link between PE and PI.
  • 456
  • 16 Jan 2023
Topic Review
Acid-Sensing Ion Channels in Glial Cells
Acid-sensing ion channels (ASICs) are proton-gated cation channels and key mediators of responses to neuronal injury. ASICs exhibit unique patterns of distribution in the brain, with high expression in neurons and low expression in glial cells. While there has been a lot of focus on ASIC in neurons, less is known about the roles of ASICs in glial cells. ASIC1a is expressed in astrocytes and might contribute to synaptic transmission and long-term potentiation. In oligodendrocytes, constitutive activation of ASIC1a participates in demyelinating diseases. ASIC1a, ASIC2a, and ASIC3, found in microglial cells, could mediate the inflammatory response. Under pathological conditions, ASIC dysregulation in glial cells can contribute to disease states. For example, activation of astrocytic ASIC1a may worsen neurodegeneration and glioma staging, activation of microglial ASIC1a and ASIC2a may perpetuate ischemia and inflammation, while oligodendrocytic ASIC1a might be involved in multiple sclerosis.
  • 455
  • 08 Feb 2022
Topic Review
Etiology of Peripheral Arterial Disease
Peripheral artery disease (PAD) affects more than 230 million people worldwide. PAD patients suffer from reduced quality of life and are at increased risk of vascular complications and all-cause mortality. Despite its prevalence, impact on quality of life and poor long-term clinical outcomes, PAD remains underdiagnosed and undertreated compared to myocardial infarction and stroke. PAD is due to a combination of macrovascular atherosclerosis and calcification, combined with microvascular rarefaction, leading to chronic peripheral ischemia. Novel therapies are needed to address the increasing incidence of PAD and its difficult long-term pharmacological and surgical management.
  • 452
  • 13 Jun 2023
Topic Review
O-GlcNAcylation in Renal (Patho)Physiology
O-GlcNAcylation is regulated by the enzymatic balance between O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) which add and remove GlcNAc residues on target proteins, respectively. This post-translational modification is essential for cellular physiology, and unbalanced protein O-GlcNAcylation is associated with several diseases. Here, we discuss aspects of protein O-GlcNAcylation in renal physiology and pathophysiology
  • 450
  • 26 Oct 2022
Topic Review
Physiological Mental Workload Indicators
Mental workload (MWL), sometimes referred to as cognitive workload, is a dynamic concept that acquires different meanings depending on the outcome desired.  Physiological indicators of MWL have gained an immense amount of attention in several domains, considering their objective nature. The response of the human body to external sources of workloads can be effectively observed through physiological signal markers that are not heavily affected by subjective opinions. Overall, it can be considered an indirect measure that can be related to MWL and has a relatively quicker response to sudden shifts. Physiological processes that include heart activity, respiration, digestion, and sexual arousal are involuntarily regulated by the peripheral component of the autonomic nervous system. The autonomic nervous system has three distinct divisions, namely, the sympathetic (SNS), parasympathetic (PNS), and enteric. The activation of the SNS and PNS can be directly observed in HR and HRV variations. Some commonly used SNS- and PNS-related physiological indicators are heart rate (HR), heartrate variability (HRV), respiratory rate (RR), galvanic skin response (GSR), and electrodermal activity (EDA). Eye-related data such as pupil size are also a result of autonomic activity and have been an important component of MWL research, as visual and mental tasks are highly correlated. Previous research has suggested that an increase in the cognitive demand or an increase in the MWL can result in increased blood flow in the frontal cortex of the brain.
  • 450
  • 18 May 2023
Topic Review
Adipose-Derived Mesenchymal Stromal Cells
Being of mesodermal origin, ASCs (adipose-derived mesenchymal stromal cells) can be easily induced to differentiate into chondrocyte-like and osteocyte-like elements and used to repair damaged tissues. Moreover, they can be easily harvested and used for autologous implantation. A plethora of ASC-based strategies are being developed worldwide: they include the transplantation of freshly harvested cells, in vitro expanded cells or predifferentiated cells. Moreover, improving their positive effects, ASCs can be implanted in combination with several types of scaffolds that ensure the correct cell positioning; support cell viability, proliferation and migration; and may contribute to their osteogenic or chondrogenic differentiation. Examples of these strategies are described here, showing the enormous therapeutic potential of ASCs in this field. For safety and regulatory issues, most investigations are still at the experimental stage and carried out in vitro and in animal models. Clinical applications have, however, been reported with promising results and no serious adverse effects.
  • 450
  • 31 Jul 2023
Topic Review
Dietitian for Insulin Resistance and Urolithiasis
Many obesity and diet-related diseases have been observed. Insulin resistance (IR), a state of tissue resistance to insulin due to its impaired function, is a common coexisting condition. The most important predisposing factors are excessive visceral fat and chronic low-grade inflammatory response. An additional disease that is often associated with IR is urolithiasis. The common feature of these two conditions is metabolic acidosis and mild inflammation. A patient diagnosed with IR and urolithiasis is a big challenge for a dietitian.
  • 447
  • 30 Jun 2022
Topic Review
Microbiota Short-Chain Fatty Acids Modulate Antioxidant Defences
Food nutrients play a key role in human metabolism and health via the modulation of multiple mechanisms, including energy metabolism, intestinal homeostasis, antioxidant homeostasis, and immune responses. The intestine is an essential organ involved in human nutrition, the metabolic activity of gut microbes is essential for maintaining host health, and alterations in its composition induce metabolic shifts that may have adverse effects. The consensus on microbiota-mediated healthy effects on the host is based on the microbe-induced biotransformation of food components into bioactive metabolites. Bioactive molecules exhibit, in combination with food components, the ability to modulate the metabolic pathways of the host or to modify the composition and metabolism of the microbiota. Studies indicated the efficacy of the carbohydrates accessible to the microbiota (MACs), polyphenols, and polyunsaturated fatty acids (PUFAs) in increasing the microbial population with the ability to yield biologically active metabolites (e.g., polyphenol metabolites, short-chain fatty acids (SCFAs)) capable of modulating redox homeostasis of the host.
  • 442
  • 16 Jun 2023
Topic Review
Single Cell Transcriptomics to Understand Hematopoietic Stem Cells
Aging leads to a decline in the functions of the hematopoietic and immune system, which in the elderly results in an increased risk of infection, poor vaccination efficacy, anemia and blood cancers. It is now well established that age-related dysfunction of the entire hematopoietic system originates from hematopoietic stem cells (HSCs), which lose their fitness over time. Single-cell transcriptomic technologies enable the uncovering and characterization of cellular heterogeneity and pave the way for studies aiming at understanding the origin and consequences of it. The hematopoietic system is in essence a very well adapted model system to benefit from this technological advance because it is characterized by different cellular states. Each cellular state, and its interconnection, may be defined by a specific location in the global transcriptional landscape sustained by a complex regulatory network. This transcriptomic signature is not fixed and evolved over time to give rise to less efficient hematopoietic stem cells (HSC), leading to a well-documented hematopoietic aging. 
  • 441
  • 18 Oct 2022
Topic Review
PPARs and Their Neuroprotective Effects in Parkinson’s Disease
Peroxisome proliferator-activated receptor (PPAR) belong to subgroup 1 of the nuclear receptor superfamily. They are known to form heterodimers with the retinoid X receptors (RXRs) when activated by endogenous or exogenous ligands and to bind to a co-activator such as PGC-1α.
  • 439
  • 22 Feb 2023
Topic Review
Roles of Nox3 in Diseases
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. Among the Nox isoforms, the NADPH oxidase 3 is the perhaps most underrated Nox enzyme, since it was firstly discovered in the inner ear. Despite the fact that Nox3 is expressed not only in the inner ear but also in various cell types and organs, the “inner ear stigma” remains until today. However ,the involvment of Nox3 is not just limited to the inner ear but extends to various organs and the related diseases.
  • 438
  • 20 Feb 2024
Topic Review
REM Sleep, Sleep Fuctions and Sleep Quality
The correct phase relationship of the sleep period with the circadian pacemaker is an important factor to guarantee adequate restorative sleep duration and sleep continuity, thus providing the necessary background for a good night’s sleep. Due to the fact that REM sleep is controlled by the circadian clock, it can provide a window-like mechanism that defines the termination of the sleep period when there is still the necessity to complete the sleep processes  and to meet the circadian end of sleep timing. An adequate amount of REM sleep appears necessary to guarantee sleep continuity, while periodically activating the brain and preparing it for the return to consciousness.
  • 432
  • 23 Dec 2021
Topic Review
Lipid-Based Antioxidant Systems in Photoreceptors and RPE Cells
The retina, a multi-layered nervous structure in the back of the eye, detects light stimuli via specialised primary sensory neurons, named after their morphologies as retinal rods and cones. Rods and cones in vitro may retain their ability to respond to light for several hours by generating an electrical response. However, their viability and long-term operation require the functional interaction with retinal pigment epithelial (RPE) cells and a vascular system with peculiar features, the choroidal capillaries (ChC), whose specific form and shape support its function.
  • 431
  • 20 Mar 2023
Topic Review
Eccentric Training in Pulmonary Rehabilitation of Post-COVID-19 Patients
COVID-19, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mainly attacks cells in the respiratory system. In the acute phase of COVID-19, patients with moderate–to–severe ARDS are characterized by an elevated pro-inflammatory state secondary to a “cytokine storm” (CS). This process stimulates the generation of reactive chemical species (RS) and induces oxidative stress (OS), that has been postulated as the primary cause of tissue damage and consequent functional impairments post-COVID-19.
  • 426
  • 20 Oct 2022
Topic Review
Role of Adenosine in Extreme Oxygen Pressure  Exposure
At high altitudes, the increased adenosine concentration contributes to brain protection against hypoxia through various mechanisms such as stimulation of glycogenolysis for ATP production, reduction in neuronal energy requirements, enhancement in 2,3-bisphosphoglycerate production, and increase in cerebral blood flow secondary to vasodilation of cerebral arteries. In the context of mountain illness, the increased level of A2AR expression leads to glial dysfunction through neuroinflammation and is involved in the pathogenesis of neurological disorders. Nonetheless, a high level of adenosine concentration can protect against high-altitude pulmonary edema via a decrease in pulmonary arterial pressure. The adenosinergic system is also involved in the acclimatization phenomenon induced by prolonged exposure to altitude hypoxia. During hyperoxic exposure, decreased extracellular adenosine and low A2A receptor expression contribute to vasoconstriction. The resulting decrease in cerebral blood flow is considered a preventive phenomenon against cerebral oxygen toxicity through the decrease in oxygen delivery to the brain. With regard to lung oxygen toxicity, hyperoxia leads to an increase in extracellular adenosine, which acts to preserve pulmonary barrier function. Changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures frequently have a benefit in decreasing the risk of adverse effects.
  • 423
  • 28 Oct 2022
Topic Review
The Microenvironment of the Pathogenesis of Cardiac Hypertrophy
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. 
  • 419
  • 14 Jul 2023
Topic Review
Impairment of Blood-Brain Barrier in Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD.
  • 418
  • 15 Sep 2022
Topic Review
Draining the Pleural Space
Lymphatic vessels drain lymph from interstitial spaces and serosal cavities to eventually empty into the blood venous stream. This task is more difficult when the liquid to be drained has a very subatmospheric pressure, as it occurs in the pleural cavity. This peculiar space must maintain a very low fluid volume at negative hydraulic pressure to guarantee a proper mechanical coupling between the chest wall and lungs. Moreover, lubrication of the constant sliding pleurae to avoid any damage to those very thin structures, constant liquid renovation preventing excessive drying, or accumulation must be fulfilled at the same time.
  • 409
  • 31 Mar 2022
Topic Review
Ependymal Dysfunctions in the Pathogenesis of Neurodegenerative Diseases
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the cerebrospinal fluid (CSF)flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases.
  • 403
  • 06 May 2023
  • Page
  • of
  • 16
ScholarVision Creations