Topic Review
Erectile Dysfunction
Erectile dysfunction (ED), also called impotence, is the type of sexual dysfunction in which the penis fails to become or stay erect during sexual activity. It is the most common sexual problem in men. Through its connection to self-image and to problems in sexual relationships, erectile dysfunction can cause psychological harm. In about 80% of cases, physical causes can be identified. These include cardiovascular disease; diabetes mellitus; neurological problems, such as those following prostatectomy; hypogonadism; and drug side effects. About 10% of cases are psychological impotence, caused by thoughts or feelings; here, there is a strong response to placebo treatment. The term erectile dysfunction is not used for other disorders of erection, such as priapism. Treatment involves addressing the underlying causes, lifestyle modifications, and addressing psychosocial problems. In many cases, treatment is attempted by drugs, specifically PDE5 inhibitors (such as sildenafil), which dilate blood vessels, allowing more blood to flow through the spongy tissue of the penis (akin to opening a valve further in order to allow more water to enter a fire hose). Other treatments, less commonly used, include prostaglandin pellets, inserted in the urethra; smooth-muscle relaxants and vasodilators, injected into the penis; penile implants; penis pumps; and vascular reconstructive surgery.
  • 1.1K
  • 29 Nov 2022
Topic Review
Colon Fibroblasts and Inflammation
Colorectal cancer (CRC) is the third most common cause of cancer-related death. Patients suffering inflammatory bowel disease have an increased risk of CRC. It is admitted that CRC found its origin within crypts of the colon mucosa, which host the intestinal stem cells (ISCs) responsible of the tissue renewal. ISC behavior is controlled by the fibroblasts that surround the crypt. During inflammation, the signals delivered by fibroblasts are altered, leading to stem cells’ dysregulation, possibly turning them into cancer-initiating cells.
  • 1.1K
  • 23 Jun 2021
Topic Review
Melatonin
Melatonin, the nocturnally released pineal hormone, has attracted great attention due to its pleiotropic roles. Although its major role is the regulation of the circadian rhythm, this indoleamine engages in multiple mechanisms, including neurogenesis, antioxidation, and inflammatory responses. Apart from its versatility, this molecule has also gained a reputation as being potentially tumor suppressive, espe-cially in hormone-dependent cancers . Melatonin is able to selectively neutralize the estrogenic effects on the breast. The oncostatic roles of melatonin are based on its diverse effects, including its antioxidative properties, apoptosis induction, and an-ticancer immunity . Interestingly, melatonin is able to protect normal cells from the cytotoxicity accompanied by ionizing radiation (IR). This non-targeted effect fol-lowing IR is alleviated via melatonin-mediated regulation of prostaglandins, Toll-like receptors (TLRs), and transcription factors . Additionally, melatonin has been proposed to enhance the therapeutic efficacy of IR, suggesting that this hormone could be a potential radiosensitizer . The radiosensitization of breast cancer cells by mel-atonin is mediated through reduced cell proliferation, the facilitation of cell cycle ar-rest, downregulated DNA repair, and increased p53 mRNA levels .
  • 1.1K
  • 12 Jan 2021
Topic Review
Druggable genetic alterations in NSCLC
Lung cancer is the leading cause of death for malignancy worldwide. Its molecular profiling has enriched our understanding of cancer initiation and progression and has become fundamental to provide guidance on treatment with targeted therapies. Testing the presence of driver mutations in specific genes in lung tumors has thus radically changed the clinical management and outcomes of the disease. Numerous studies performed with traditional sequencing methods have investigated the occurrence of such mutations in lung cancer, and new insights regarding their frequency and clinical significance are continuously provided with the use of last generation sequencing technologies.
  • 1.1K
  • 15 Jan 2021
Topic Review
Microbiota and Endometriosis
Imbalances in gut and reproductive tract microbiota composition, known as dysbiosis, disrupt normal immune function, leading to the elevation of proinflammatory cytokines, compromised immunosurveillance and altered immune cell profiles, all of which may contribute to the pathogenesis of endometriosis. Over time, this immune dysregulation can progress into a chronic state of inflammation, creating an environment conducive to increased adhesion and angiogenesis, which may drive the vicious cycle of endometriosis onset and progression. Recent studies have demonstrated both the ability of endometriosis to induce microbiota changes, and the ability of antibiotics to treat endometriosis. Endometriotic microbiotas have been consistently associated with diminished Lactobacillus dominance, as well as the elevated abundance of bacterial vaginosis-related bacteria and other opportunistic pathogens. Possible explanations for the implications of dysbiosis in endometriosis include the Bacterial Contamination Theory and immune activation, cytokine-impaired gut function, altered estrogen metabolism and signaling, and aberrant progenitor and stem-cell homeostasis. 
  • 1.1K
  • 23 Jun 2021
Topic Review
Vitamin K2 and Alzheimer’s Disease
Recent studies have highlighted the importance of vitamin K2 (VK2) in human health. However, there have been no clinical studies investigating the role of VK2 in the prevention or treatment of Alzheimer’s disease (AD), a debilitating disease for which currently there is no cure. In reviewing basic science research and clinical studies that have connected VK2 to factors involved in AD pathogenesis, we have found a growing body of evidence demonstrating that VK2 has the potential to slow the progression of AD and contribute to its prevention. In our review, we consider the antiapoptotic and antioxidant effects of VK2 and its impact on neuroinflammation, mitochondrial dysfunction, cognition, cardiovascular health, and comorbidities in AD. We also examine the link between dysbiosis and VK2 in the context of the microbiome’s role in AD pathogenesis.
  • 1.1K
  • 22 Sep 2021
Topic Review
Left Ventricular Summit
The left ventricular summit (LVS) is a triangular area located at the most superior portion of the left epicardial ventricular region, surrounded by the two branches of the left coronary artery: the left anterior interventricular artery and the left circumflex artery. The triangle is bounded by the apex, septal and mitral margins and base. 
  • 1.1K
  • 09 Aug 2021
Topic Review
Eight Promising Radionuclides for TAT
Among all existing radionuclides, only a few are of interest for therapeutic applications and more specifically for targeted alpha therapy (TAT). Actinium-225, astatine-211, bismuth-212, bismuth-213, lead-212, radium-223, terbium-149 and thorium-227 are considered as the most suitable. Despite common general features, they all have their own physical characteristics that make them singular and so promising for TAT. These radionuclides were largely studied over the last two decades, leading to a better knowledge of their production process and chemical behavior,allowing for an increasing number of biological evaluations. The aim of this review is to summarize the main properties of these eight chosen radionuclides. An overview from their availability to the resulting clinical studies, by way of chemical design and preclinical studies is discussed.
  • 1.1K
  • 13 Jul 2021
Topic Review
Angiotensin II Type 2 Receptor
Preclinical evidence, accumulated over the past decade, indicates that the angiotensin II type 2 receptor (AT2R) stimulation exerts significant neuroprotective effects in various animal models of neuronal injury, notably in the central nervous system.   Studies of brain AT2R distribution and function are outshining the recent findings about AT2R in peripheral sensoryneurons and pain modulation. While AT2R, as an atypical G protein-coupled receptor, and its related signaling are still under investigation, pharmacological studies have shown that stimulation of AT2R leads to neuritogenesis in vitro and in vivo. This review aims to report the evidence of potential neuroprotective and neuroregenerative roles of AT2R in the peripheral nervous system (PNS).
  • 1.1K
  • 10 Mar 2021
Topic Review
Plant Secondary Metabolites in Pharmaceutical Product Development
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds.
  • 1.1K
  • 29 Mar 2022
  • Page
  • of
  • 1352
Video Production Service