Topic Review
TiO2 for Removal of VOCs
Purification of air from the VOCs (Volatile Organic Compounds) by the photocatalytic process has been confirmed to be very perspective. Although many various photocatalysts have been prepared and studied so far, TiO2 is still the most commonly used, because of its advantageous properties such as non-toxicity, relatively low cost and high stability. Surface modifications of TiO2 were extensively proceeded in order to increase photocatalytic activity of the photocatalyst under both UV and visible light activations. High yield of VOCs decomposition can be achieved on TiO2, depending on its structure and preparation method. The contact time of reactant with the active sites of TiO2 surface will determinate the efficiency of the photocatalytic process. Although VOCs decomposition can occur under weak UV light, more intensive UV irradiation will guarante complete mineralisation process. 
  • 806
  • 22 Apr 2021
Topic Review
TiO2 as Water Splitting Photocatalyst
Hydrogen produced from water using photocatalysts driven by sunlight is a sustainable way to overcome the intermittency issues of solar power and provide a green alternative to fossil fuels. TiO2 has been used as a photocatalyst since the 1970s due to its low cost, earth abundance, and stability. There has been a wide range of research activities in order to enhance the use of TiO2 as a photocatalyst using dopants, modifying the surface, or depositing noble metals. However, the issues such as wide bandgap, high electron-hole recombination time, and a large overpotential for the hydrogen evolution reaction (HER) persist as a challenge. Here, we review state-of-the-art experimental and theoretical research on TiO2 based photocatalysts and identify challenges that have to be focused on to drive the field further. We conclude with a discussion of four challenges for TiO2 photocatalysts—non-standardized presentation of results, bandgap in the ultraviolet (UV) region, lack of collaboration between experimental and theoretical work, and lack of large/small scale production facilities. We also highlight the importance of combining computational modeling with experimental work to make further advances in this exciting field.
  • 1.5K
  • 24 Mar 2021
Topic Review
TiOPhotocatalysis
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. 
  • 360
  • 17 Jul 2023
Topic Review
Tin-iodate rechargeable battery
The tin-iodate battery is a rechargeable battery for large scale energy storage.
  • 1.4K
  • 04 Jan 2022
Topic Review
Tin-Based Perovskite Solar Cells, Dopants
Tin-based perovskite solar cells exist in p-i-n or n-i-p configurations alternating the position of the electron transport (n) and hole transport layer (p). Therefore, during fabrication of these layered devices, it is very common to encounter energy level mismatches and defects at the interface. The simplest trick to improve the performance of tin-based perovskite solar cells is to add an interfacial layer to minimise the energy mismatch and defects at interfaces.
  • 668
  • 24 Sep 2021
Topic Review
Tin Oxide Based Hybrid Nanostructures for Gas Sensing
Metal oxide nanoparticles represent a field of materials chemistry and have attracted considerable attention due to their potential applications in domestic, industrial and commercial fields as sensors due to their many significant features such as easy production, low cost and compact size. The potential implications of metal oxides in fields such as energy storage, catalysis, medicine, informational technology and gas sensing have driven much research attention to the development of synthetic pathways towards their nanostructure fabrication. Due to the reduced size and increased surface-to-volume ratio, the nano-sized compounds have shown applications in different fields such as gas sensing, catalysis, lithium-ion batteries and dye-sensitized solar cells. Among various applications of nanomaterials, gas sensing has attracted much attention from the scientific community due to the increased demand for efficient sensors for defense, environmental applications, exhaust gas determination in automobiles, leakage determination in chemical plants, product quality assurance in food companies and so on. One of the most prominent applications of gas sensors is the detection of harmful gases present in the environment and their precise monitoring beyond a certain limit, which has become the most challenging aspect for humankind in this ever-polluted environment.
  • 484
  • 03 Nov 2022
Topic Review
TiAl–Si Alloys
The experimental generation of TiAl–Si alloys is composed of titanium aluminide (TiAl, Ti3Al or TiAl3) matrix reinforced by hard and heat-resistant titanium silicides (especially Ti5Si3). The alloys are characterized by wear resistance comparable with tool steels, high hardness, and very good resistance to oxidation at high temperatures (up to 1000 °C), but also low room-temperature ductility, as is typical also for other intermetallic materials.
  • 929
  • 01 Apr 2021
Topic Review
Ti:Sa Crystals
In this paper, Ti:Sa amplifiers with crystals of the different geometries are discussed. Benefits of using this active medium for a thin disk (TD) and slab amplifiers are evaluated numerically and tested experimentally. Thermal management for amplifiers with multi-kW average power and multi-J pulse energy has been demonstrated. The presented numerical simulations revealed the existing limitations for heat extraction in TD geometry in the sub-joule energy regime for higher repetition rate operation. Geometry conversion from TD to thin-slab (TS) and cross-thin-slab (XTS) configurations significantly increases the cooling efficiency with an acceptable crystal temperature for pump average power values up to few kW with room temperature cooling, and up to tens of kW with cryogenic cooling. The abilities to attain 0.3 J output energy and a greater than 50% extraction efficiency were demonstrated with a repetition rate exceeding 10 kHz with room temperature cooling and one order more of a repetition rate with cryogenic conditions with pulsed pumping. Direct diode pumping simulated for CW regimes demonstrated 1.4 kW output power with 34% extraction efficiency using room temperature cooling and more than 10 kW and ~40% efficiency with cryogenic cooling.
  • 457
  • 19 Oct 2021
Topic Review
Ti-Based Catalysts on Magnesium Hydride
Magnesium-based hydrides are considered as promising candidates for solid-state hydrogen storage and thermal energy storage, due to their high hydrogen capacity, reversibility, and elemental abundance of Mg. To improve the sluggish kinetics of MgH2, catalytic doping using Ti-based catalysts is regarded as an effective approach to enhance Mg-based materials.
  • 929
  • 31 May 2021
Topic Review
Ti Nitrides and Ti Silicides
The diffusion of nitrogen into TiSi2 films of low electrical resistivity, deposited on complementary metal oxyde semiconductor (CMOS) and Schottky diodes components increases their performances. TiN acts as a good diffusion barrier, gate material, Schottky barrier contact...Both TiSi2 and TiN are synthesized in Ti films coated on Si wafers and processed in an expanding microwave plasma producing nitrogen species such as NHx...This process promotes the chemical reactions at the surface of the metal. The growth of both compounds give rise to two competing processes which are thermodynamically and kinetically controlled. Ti films, 250 nm thick, processed at 600°C for  30 min, only consist of TiSi2 crystallites and TiN of amorphous structure. TiN crystallizes at 800°C and grows at the expense of TiSi2 according to thermodynamic data. 
  • 4.9K
  • 30 Oct 2020
  • Page
  • of
  • 467
Video Production Service