Topic Review
Design of Gold Nanoparticle Vertical Flow Assays
Vertical flow assays (VFAs) or flow-through assays have emerged as an alternate type of paper-based assay due to their faster detection time, larger sample volume capacity, and significantly higher multiplexing capabilities compared to lateral flow assays (LFAs).  VFA can be used for detecting important biomarkers in diagnostic medicine, particularly when VFA is paired with gold nanoparticle conjugation.
  • 940
  • 10 May 2022
Topic Review
CRISPR-Powered Microfluidics Applications
Clustered regularly interspaced short palindromic repeats (CRISPR) technology is a simple yet powerful tool for highly specific and rapid modification of DNA in a genome, which is the complete set of genetic instructions in an organism. One of the requirements for successful modification of the eukaryotic genome using the CRISPR/Cas9 system is the presence of the guide RNA (sgRNA or crRNA/duplex crRNA/tracrRNA) Cas9 protein complex and the introduction of mRNA or DNA. In therapeutic approaches, the genome of specific cells can be re-transplanted into the patient in vitro and then the host genome modified to treat any possible deficiency in genes. Nowadays, the use of microfluidic channels and chips is one of the best approaches to deliver materials and cells as it prevents many problems by accurately editing the cell and creating an opportunity for successful editing and screening of their genome. Such chips provide a suitable substrate for cell manipulation, drug screening, and exosome characterization. Furthermore, they are useful for pathogen and cancer detection because of their high throughput, low cost, flexibility, and controlled fluid or gas flow.
  • 621
  • 10 Jan 2022
Topic Review
Cisplatin-Induced Kidney Injury
Cisplatin is a chemotherapy agent commonly used to treat a wide variety of cancers. Despite the potential for both severe acute and chronic side effects, it remains a preferred therapeutic option for many malignancies due to its potent anti-tumor activity. Common cisplatin-associated side-effects include acute kidney injury (AKI) and chronic kidney disease (CKD). These renal injuries may cause delays and potentially cessation of cisplatin therapy and have long-term effects on renal function reserve. Thus, developing mechanism-based interventional strategies that minimize cisplatin-associated kidney injury without reducing efficacy would be of great benefit. In addition to its action of cross-linking DNA, cisplatin has been shown to affect mitochondrial metabolism, resulting in mitochondrially derived reactive oxygen species (ROS). Increased ROS formation in renal proximal convoluted tubule cells is associated with cisplatin-induced AKI and CKD.
  • 946
  • 11 Nov 2021
Topic Review
Circulating Tumor DNA—A Novel Biomarker of Tumor Progression
Cancer is the second leading cause of death in the world and seriously affects the quality of life of patients. The diagnostic techniques for tumors mainly include tumor biomarker detection, instrumental examination, and tissue biopsy. Liquid technology represented by circulating tumor DNA (ctDNA) has gradually replaced traditional technology with its advantages of being non-invasive and accurate, its high specificity, and its high sensitivity. ctDNA is a small DNA fragment derived from tumor cells, which contains tumor-related genomic information, such as mutation, methylation, microsatellite instability, etc. It is an ideal biomarker for real-time monitoring of tumor development. 
  • 262
  • 09 Jan 2023
Topic Review
Circulating Tumor Cells in Point-of-Care Settings
Circulating tumor cells (CTCs) are cells that have been shed from tumors and circulate in the bloodstream. These cells can also be responsible for further metastases and the spread of cancer. Taking a closer look and analyzing CTCs through what has come to be known as “liquid biopsy” has immense potential to further researchers’ understanding of cancer biology.
  • 295
  • 17 May 2023
Topic Review
Causes of Hypermagnesemia
Hypermagnesemia is a relatively uncommon but potentially life-threatening electrolyte disturbance characterized by elevated magnesium concentrations in the blood. Magnesium is a crucial mineral involved in various physiological functions, such as neuromuscular conduction, cardiac excitability, vasomotor tone, insulin metabolism, and muscular contraction. Prompt identification and management of hypermagnesemia are crucial to prevent complications, such as respiratory and cardiovascular negative outcomes, neuromuscular dysfunction, and coma. Preventing hypermagnesemia is crucial, particularly in high-risk populations, such as patients with impaired renal function or those receiving magnesium-containing medications or supplements. 
  • 357
  • 29 Jun 2023
Topic Review
Cannabinoids in Biological Specimens
Cannabinoids are still the most consumed drugs of abuse worldwide. Despite being considered less harmful to human health, particularly if compared with opiates or cocaine, cannabis consumption has important medico-legal and public health consequences.
  • 240
  • 09 May 2023
Topic Review
Breast Cancer Subtype-Specific miRNAs
Breast cancer is one of the most common malignancies, with multiple subtypes, based on clinical parameters and molecular profiling. In addition to disease staging, the expression status of hormone receptors’ estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in tumors define the prognosis of the cancer and treatment options. Hence, clinically, breast cancers are defined as ER+/PR+, HER+, or triple-negative (i.e., those lacking expression of these three receptors). This classification system allows for the administration of endocrine therapies in the hormone expressing subtypes. Additionally, breast cancer subtyping is observed via transcriptome profiling, which has identified four major subtypes (luminal A, luminal B, HER2, and basal-like). The ER+/PR+ breast cancers are predominately luminal A/B and TNBCs are predominately basal-like. Clearly gene expression defines breast cancer; it is then not surprising that the expression of miRNAs also displays subtype-specificity.
  • 818
  • 25 Mar 2022
Topic Review
Bispecific Antibody-Based Immune-Cell Engagers in Cancer Immunotherapy
Cancer is the second leading cause of death worldwide after cardiovascular diseases. One of the most promising targeted therapies for cancer treatment is antibody therapy. It has a superior targeting ability for antigens that are expressed on cancer cells, which results in prominent antitumor activity and lower toxicity, compared with that of chemotherapeutic agents. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers.
  • 886
  • 06 Jan 2023
Topic Review
Biotechnology for COVID-19 Diagnosis
To date, six human coronaviruses have been identified: α-coronaviruses (HCoVs-NL63, HCoVs-229E), β-coronaviruses (HCoVs-OC43, HCoVs-HKU1), severe acute respiratory syndrome-CoV (SARS-CoV), and Middle East respiratory syndrome-CoV (MERS-CoV). After the SARS-CoV-1 epidemic, the world is living a new threat to human health since December 2019—the SARS-CoV-2 or the COVID-19 pandemic. The emergence of the novel coronavirus is associated with an atypical pneumonia that has led to 90,176,569 infections and 1,936,617 deaths worldwide, as of 10 January 2021. Structurally, SARS-CoV-2 is an enveloped RNA(Ribonucleic acid) virus comprising a spike protein (S), a hemagglutinin-esterase dimer (HE), a membrane glycoprotein (M), an envelope protein (E), and a nucleocapsid protein (N). It has been demonstrated that the mechanism of the viral infection requires angiotensin-converting enzyme 2 (ACE2) binding to the protein S with high affinity. Highly expressed in the endothelial cells of the cardiovascular system and kidneys, this human receptor is used by the virus as an entry to invade target cells. Currently, immunoassays are the most popular diagnostic tools available in the market and used in medical structures. Basically, these methods use antibodies as bioreceptors targeting capsid proteins or whole viruses. In serological testing, capsid proteins are used as viral antigens to bind the immunoglobulins generated by the patient against the pathogen. Antibodies are usually obtained from animal immunization with N, S, or E protein or from the blood samples of patients who are infected [14]. In addition to the commercialized ELISA kits and rapid tests, several research reports have described novel immunoassays and immunosensors for coronavirus detection. We discuss in this part the principle of these methods as well as the most important results.
  • 852
  • 21 Apr 2021
  • Page
  • of
  • 6
Video Production Service