Topic Review
Insect Antimicrobial Peptides
Insects are the organisms from which the greatest amount of peptides are isolated. A single insect produces a mixture of 15–20 peptides, the concentration of which in the hemolymph increases rapidly during infection. Their presence in the hemolymph enables the body’s systemic response to infection, while peptides synthesized in epithelial cells participate in local reactions involving the gates of infection. With over a million described species, insects make up the largest class of organisms in the world. Insects show adaptability to repeated changes and resistance to a wide range of pathogens. The mechanism of resistance developed by insects is associated with an immune system based solely on the innate immune response, which allows for a quick and broad response to attacking organisms. Insect antimicrobial peptides (AMPs) have been increasingly used in pharmacy as well as in agriculture. With a growing number of identified peptides that can inhibit human pathogens, insect AMPs are of great interest for biomedical applications. Insect AMPs represent a highly promising alternative to overcome medical problems associated with antibiotic resistance.
  • 320
  • 05 Jul 2023
Topic Review
Carbon Emission Mitigation in the Food Industry
The food system plays a significant role in anthropogenic greenhouse gas (GHG) emissions, contributing to over one-third of these emissions. There has been limited attention given in the literature on how the food industry can effectively address the carbon issue.
  • 598
  • 05 Jul 2023
Topic Review
Plant-Derived Smoke and Karrikin 1  Activity in Seed
Plant-derived smoke and smoke water (SW) can stimulate seed germination in numerous plants from fire-prone and fire-free areas, including cultivated plants and agricultural weeds. Smoke contains thousands of compounds; only several stimulants and inhibitors have been isolated from smoke. Among the six karrikins present in smoke, karrikin 1 (KAR1) seems to be key for the stimulating effect of smoke. The discovery and activity of highly diluted SW and KAR1 at extremely low concentrations (even at ca. 10−9 M) inducing seed germination of a wide array of horticultural and agricultural plants have created tremendous opportunities for the use of these factors in pre-sowing seed treatment through smoke- or KAR1-priming.
  • 484
  • 05 Jul 2023
Topic Review
Bioactivities and Pharmaceutical Applications of Algal Phycocolloids
Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. 
  • 420
  • 05 Jul 2023
Topic Review
Therapeutic Implications of Probiotics in Alzheimer’s Disease
Alzheimer’s disease (AD) is characterized by the accumulation of specific proteins in the brain. Manipulating gut microbiota (GM) significantly reduced tau pathology and neurodegeneration in an apolipoprotein E isoform-dependent manner. The resilience of a healthy microbiota protects it from a variety of dysbiosis-related pathologies. Convincing evidence has demonstrated the roles of GM in the pathogenesis of AD, which are partly mediated by modified microglial activity in the brain. Therefore, modulation of GM may be a promising therapeutic option for AD prevention. 
  • 233
  • 05 Jul 2023
Topic Review
CDC6 as Key Inhibitory Regulator of CDK1 Activation
The kinetics of Cyclin Dependent Kinase 1 (CDK1) activation must be strictly controlled to guarantee a timely and physiological entry into mitosis. CDC6, a known S-phase regulator, has been found as a critical component in mitotic CDK1 activation cascade in early embryonic divisions. It acts due to association with Xic1 serving as a bona fide CDK1 inhibitor upstream of Aurora A and Polo-Like Kinase 1 (PLK1), both of which are CDK1 activators.
  • 219
  • 05 Jul 2023
Topic Review
Green Technologies for Nannochloropsis Fatty Acids Extraction
Nannochloropsis is a genus of microalgae widely recognized as potential sources of distinct lipids, particularly polyunsaturated fatty acids (PUFA). These may be obtained through extraction, which has conventionally been performed using hazardous organic solvents. To substitute such solvents with “greener” alternatives, several technologies have been studied to increase their extraction potential. Distinct technologies utilize different principles to achieve such objective; while some aim at disrupting the cell walls of the microalgae, others target the extraction per se. While some methods have been utilized independently, several technologies have also been combined, which has proven to be an effective strategy.
  • 384
  • 05 Jul 2023
Topic Review
Role of Enhancer-Mediated Transcriptional Regulation in Precision Biology
The emergence of precision biology has been driven by the development of advanced technologies and techniques in high-resolution biological research systems. Enhancer-mediated transcriptional regulation, a complex network of gene expression and regulation in eukaryotes, has attracted significant attention as a promising avenue for investigating the underlying mechanisms of biological processes and diseases. To address biological problems with precision, large amounts of data, functional information, and research on the mechanisms of action of biological molecules is required to address biological problems with precision. Enhancers, including typical enhancers and super enhancers, play a crucial role in gene expression and regulation within this network. The identification and targeting of disease-associated enhancers hold the potential to advance precision medicine.
  • 308
  • 05 Jul 2023
Topic Review
Mycobacterium tuberculosis as Modulators of Cell Death Mechanisms
Mycobacterium tuberculosis (Mtb) modulates diverse cell death pathways to escape the host immune responses and favor its dissemination, a complex process of interest in pathogenesis-related studies. The main virulence factors of Mtb that alter cell death pathways are classified according to their origin as either non-protein (for instance, lipomannan) or protein (such as the PE family and ESX secretion system). The 38 kDa lipoprotein, ESAT-6 (early antigen-secreted protein 6 kDa), and another secreted protein, tuberculosis necrotizing toxin (TNT), induces necroptosis, thereby allowing mycobacteria to survive inside the cell. The inhibition of pyroptosis by blocking inflammasome activation by Zmp1 and PknF is another pathway that aids the intracellular replication of Mtb. Autophagy inhibition is another mechanism that allows Mtb to escape the immune response. The enhanced intracellular survival (Eis) protein, other proteins, such as ESX-1, SecA2, SapM, PE6, and certain microRNAs, also facilitate Mtb host immune escape process. 
  • 413
  • 04 Jul 2023
Topic Review
Cyanobacteria-Derived Biofuel for Sustainable Future
Cyanobacteria are valuable sources of many novel bioactive compounds, such as lipids and natural dyes, with potential commercial implications. One of the advantages of cyanobacteria is that their biochemical constituents can be modified by altering the source of nutrients and growth conditions.
  • 534
  • 04 Jul 2023
  • Page
  • of
  • 1815
ScholarVision Creations