Topic Review
Yeast Cells in Microencapsulation
Yeasts are uni/multicellular eukaryotic organisms, originally thought to be ascomycetous fungi, but later recognized to also comprise basidiomycetous organisms; more typically, yeasts reproduce asexually (rapid duplication) but can also adopt sexual reproduction.
  • 1.1K
  • 02 Jul 2021
Topic Review
Coronavirus Disease 2019
Review of the effect of COVID-19 on pulmonary circulation
  • 1.1K
  • 20 Aug 2020
Topic Review
Genus Bacillus in the Biodamage/Biodegradation of Plastics
Bacteria of the genus Bacillus are able to form corrosive compounds, polymer-degrading compounds, antimicrobials and antibiofilm-forming compounds.
  • 1.1K
  • 12 Nov 2021
Topic Review
Honeybee Microbiota
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. 
  • 1.1K
  • 05 Sep 2021
Topic Review
Zetaproteobacteria
The class Zetaproteobacteria is the sixth and most recently described class of the Proteobacteria. Zetaproteobacteria can also refer to the group of organisms assigned to this class. The Zetaproteobacteria were originally represented by a single described species, Mariprofundus ferrooxydans, which is an iron-oxidizing neutrophilic chemolithoautotroph originally isolated from Loihi Seamount in 1996 (post-eruption). Molecular cloning techniques focusing on the small subunit ribosomal RNA gene have also been used to identify a more diverse majority of the Zetaproteobacteria that have as yet been unculturable. Regardless of culturing status, the Zetaproteobacteria show up worldwide in estuarine and marine habitats associated with opposing steep redox gradients of reduced (ferrous) iron and oxygen, either as a minor detectable component or as the dominant member of the microbial community. Zetaproteobacteria have been most commonly found at deep-sea hydrothermal vents, though recent discovery of members of this class in near-shore environments has led to the reevaluation of Zetaproteobacteria distribution and significance.
  • 1.1K
  • 18 Nov 2022
Topic Review
The Invasive Fireweed (Senecio madagascariensis Poir)
Senecio madagascariensis originates from southern Africa but it has been introduced to several other countries including Australia. Climatic suitability suggests that there are large areas around the world suitable for the weed’s growth where it is currently not present. The weed poses a major threat to livestock industries in these countries through its ability to reduce pasture production and poison animals. A range of control techniques has been used to try and manage S. madagascariensis. Besides using traditional approaches, the use of competitive pastures and more tolerant livestock (such as sheep and goats) are some of the other options recommended as part of an integrated approach. 
  • 1.1K
  • 17 Jan 2022
Topic Review
New AMPs' Prediction and Development
Theoretical methods for finding and predicting new antimicrobial peptides (AMPs), based on the use of specially designed programs for these purposes, are making an increasing contribution to the development of new AMPs. Machine learning methods are also used for the prediction. Artificial neural networks perform highly accurate predictions based on rules from databases of antimicrobial peptides. Recently published data on the development of new AMP drugs based on a combination of molecular design and genetic engineering approaches are presented. This review examines AMP development strategies from the perspective of the current high prevalence of antibiotic-resistant bacteria, and the potential prospects and challenges of using AMPs against infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In turn, we proposed another strategy for the development of new AMPs based on predicting amyloidogenic regions in a protein molecule sequence.
  • 1.1K
  • 30 Jun 2021
Topic Review
Genetic and Genomic Alterations in Glioblastoma Multiforme
Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow.
  • 1.1K
  • 23 May 2022
Topic Review
DPN Pathology at blood–nerve barrier
In diabetic peripheral neuropathy (DPN), metabolic disorder by hyperglycemia progresses in pe-ripheral nerves. In addition to the direct damage to peripheral neural axons, the homeostatic mechanism of peripheral nerves is disrupted by dysfunction of the blood–nerve barrier (BNB) and Schwann cells. The disruption of the BNB, which is a crucial factor in DPN development and ex-acerbation, causes axonal degeneration via various pathways. Although many reports revealed that hyperglycemia and other important factors, such as dyslipidemia-induced dysfunction of Schwann cells, contributed to DPN, the molecular mechanisms underlying BNB disruption have not been sufficiently elucidated, mainly because of the lack of in vitro studies owing to difficulties in establishing human cell lines from vascular endothelial cells and pericytes that form the BNB.
  • 1.1K
  • 05 Jan 2021
Topic Review
Salmonella enterica
Salmonella enterica serovars are important pathogens of humans and animals that are responsible for enormous morbidity, mortality and economic loss worldwide.  Models used to study the disease pathology so far have provided valuable advancements, however, the molecular complexity of its pathogenesis remains poorly understood, particularly in humans. Therefore there remains a disconnect between what works at the bench versus at the bedside, especially in case of vaccines. The development of organoids/enteroids offers a tremendous opportunity to bridge this gap by bringing human-specific factors into the research models as well as elevate our understanding of the interactions and crosstalk between multiple cell types and the microbiota with Salmonella. Thus the use of organoids in studying Salmonella biology has the potential for improving clinical outcomes and future prophylactic and therapeutic intervention strategies.
  • 1.0K
  • 29 Oct 2020
  • Page
  • of
  • 1815
ScholarVision Creations