Topic Review
Postharvest Ultraviolet Radiation in Fruit and Vegetables
Ultraviolet (UV) radiation comprises the region of the electromagnetic spectrum (EM) between visible light and X-rays (100–400 nm). It was discovered in 1801 by Johann Wilhelm Ritter, who observed that radiation outside the violet end of the visible solar spectrum could decompose silver chloride. Seven decades later, it was discovered that UV light could prevent microbial growth.
  • 1.3K
  • 24 Apr 2022
Topic Review
Approaches for Water Pollution Monitoring
Researchers are continuously rallying to enhance the detection of causal source for water pollution through either conventional or mostly advanced approaches focusing on spectrometry, high-throughput sequencing, and flow cytometry technology among others. From this review’s perspective, each pollution evaluation technology has its own advantages and it would be beneficial for several aspects of pollutants assessments to be combined and established as a complementary package for a better aquatic environmental management in the long run.
  • 1.3K
  • 15 Dec 2020
Topic Review
Microbiota for HPV Infection
The microbiome is able to modulate immune responses, alter the physiology of the human organism, and increase the risk of viral infections and development of diseases such as cancer. Herein, we address changes in the cervical microbiota as potential biomarkers to identify the risk of cervical intraepithelial neoplasia (CIN) development and invasive cervical cancer in the context of human papillomavirus (HPV) infection.
  • 1.3K
  • 30 Oct 2020
Biography
Marco Visconti
Marco Visconti (born 4 June 1978) is an Italian occultist and musician.[1] He is known for his work with the musical group XP8[2] and Faderhead.[3] Under the name Azrael[4] Visconti is an past officer[5] of the Thelemic organisation Ordo Templi Orientis (O.T.O.) in London,[6] and scholar of the occult works of English author Aleister Crowley, the founder of the philosophy and religion of Thelema
  • 1.3K
  • 22 Nov 2022
Topic Review
HSP90 inhibitors for IPF/COVID-19
Heat shock protein 90 (HSP90) is an important chaperone that assists the late stage folding of several proteins involved in cell survival in response to environmental stressors. The inhibition of HSP90 is followed by a complex modulation of the proteome and the kinome, that has proved beneficial in cancer and various neurodegenerative diseases. Additionally, accumulating literature suggests that HSP90 may be a key target during the development of pulmonary fibrosis and that its inhibition could serve as a new and exciting therapeutic approach. We have summarized the current evidence about HSP90’s role in Idiopathic Pulmonary Fibrosis (IPF), the results from preclinical studies on its inhibition and the intracellular signaling pathways involved, in a recent review article (Review). In this Article entry, we will introduce the main findings discussed in the review and focus on its translation and possible significance in the era of the SARS-CoV-2 pandemic.
  • 1.3K
  • 07 Aug 2020
Topic Review
MRNA Vaccine
An mRNA vaccine is a type of vaccine that uses a copy of a molecule called messenger RNA (mRNA) to produce an immune response. The vaccine delivers molecules of antigen-encoding mRNA into immune cells, which use the designed mRNA as a blueprint to build foreign protein that would normally be produced by a pathogen (such as a virus) or by a cancer cell. These protein molecules stimulate an adaptive immune response that teaches the body to identify and destroy the corresponding pathogen or cancer cells. The mRNA is delivered by a co-formulation of the RNA encapsulated in lipid nanoparticles that protect the RNA strands and help their absorption into the cells. File:MRNA vaccines against the coronavirus.webm Reactogenicity, the tendency of a vaccine to produce adverse reactions, is similar to that of conventional non-RNA vaccines. People susceptible to an autoimmune response may have an adverse reaction to messenger RNA vaccines. The advantages of mRNA vaccines over traditional vaccines are ease of design, speed and lower cost of production, the induction of both cellular and humoral immunity, and lack of interaction with the genomic DNA. While some messenger RNA vaccines, such as the Pfizer–BioNTech COVID-19 vaccine, have the disadvantage of requiring ultracold storage before distribution, other mRNA vaccines, such as the Moderna, CureVac, and Walvax COVID-19 vaccines, do not have such requirements. In RNA therapeutics, messenger RNA vaccines have attracted considerable interest as COVID-19 vaccines. In December 2020, Pfizer–BioNTech and Moderna obtained authorization for their mRNA-based COVID-19 vaccines. On 2 December, the UK Medicines and Healthcare products Regulatory Agency (MHRA) became the first medicines regulator to approve an mRNA vaccine, authorizing the Pfizer–BioNTech vaccine for widespread use. On 11 December, the US Food and Drug Administration (FDA) issued an emergency use authorization for the Pfizer–BioNTech vaccine and a week later similarly authorized the Moderna vaccine.
  • 1.3K
  • 16 Nov 2022
Topic Review
Human Satellite DNA Families
Going back to the 1960s, the discovery and classification of three clearly distinguishable human genomic DNA fractions in CsSO4 gradients established the identity of the corresponding classical satellite DNAs I, II, and III. More precisely, a set of repetitive sequences with analogous buoyant densities was found to compose each gradient fraction. These DNA fractions presented a characteristic inter-sequence heterogeneity, which led to a new classification in 1987, as a prime family of simple repeats was identified for each fraction. The three families were described as satellite DNA families I, II, and III and were first reported to be present in all acrocentric chromosomes, as well as in chromosomes 3 and 4. Additionally, the centromeric alpha (α) satellite DNA family was also identified and described, soon becoming the most intensively studied human satDNA sequence. Later on, gamma (γ) and beta (β) satellites were likewise found among the diverse families of human satellite DNAs.
  • 1.3K
  • 13 May 2021
Topic Review
Homocysteine and Mitochondria
Elevated concentration of homocysteine (Hcy) in the blood plasma, hyperhomocysteinemia (HHcy), has been implicated in various disorders, including cardiovascular and neurodegenerative diseases. Accumulating evidence indicates that pathophysiology of these diseases is linked with mitochondrial dysfunction. Mitochondria are essential for maintaining cellular homeostasis and function. The interaction between Hcy and mitochondria is complex and reactive oxygen species (ROS) seem to be important mediators of Hcy effects. Although oxidative damage to mitochondria is frequently demonstrated under HHcy, Hcy may have also beneficial effects on mitochondrial function and cell viability.
  • 1.3K
  • 11 Nov 2020
Topic Review
Extreme Microorganisms in the Context of Biogeochemical Nitrogen Cycle
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
  • 1.3K
  • 17 Jun 2020
Topic Review
Inclusive Fitness
In evolutionary biology, inclusive fitness is one of two metrics of evolutionary success as defined by W. D. Hamilton in 1964. An individual's own child, who carries one half of the individual's genes, is defined as one offspring equivalent. A sibling's child, who will carry one-quarter of the individual's genes, is 1/2 offspring equivalent. Similarly, a cousin's child, who has 1/16 of the individual's genes, is 1/8 offspring equivalent. From the gene's point of view, evolutionary success ultimately depends on leaving behind the maximum number of copies of itself in the population. Prior to Hamilton's work, it was generally assumed that genes only achieved this through the number of viable offspring produced by the individual organism they occupied. However, this overlooked a wider consideration of a gene's success, most clearly in the case of the social insects where the vast majority of individuals do not produce (their own) offspring.
  • 1.3K
  • 28 Nov 2022
  • Page
  • of
  • 1815
ScholarVision Creations