You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Hydraulic Actuators
Hydraulic actuators are elements converting the energy of the working fluid into mechanical energy related to the reciprocating motion. The most frequently applied materials used in power hydraulics are described, and various surface modifications of the discussed elements, which are aimed at improving the operating parameters of actuators, are presented. The most frequently used materials for actuators elements are iron alloys. However, due to rising ecological requirements, there is a tendency to looking for modern replacements to obtain the same or even better mechanical or tribological parameters. Sealing systems are manufactured mainly from thermoplastic or elastomeric polymers, which are characterized by low friction and ensure the best possible interaction of seals with the cooperating element. In the field of surface modification, among others, the issue of chromium plating of piston rods has been discussed, which, due, to the toxicity of hexavalent chromium, should be replaced by other methods of improving surface properties.
  • 13.2K
  • 23 Mar 2021
Topic Review
Applications of Carbon Fiber-Reinforced Polymer Composites
Carbon fiber-reinforced polymer (CFRP) composites are used in a variety of applications such as aircraft, automobiles, body armors, and the sports sector owing to their ultra-strong and lightweight characteristics.
  • 12.7K
  • 10 Jun 2022
Topic Review
Manufacturing Processes for Ceramic Matrix Composites
Materials such as ceramic matrix composites (CMCs) have been the focus of research and being tested in different conditions for several decades now. They are known as a subgroup of composite materials and ceramics. Ceramic composites were developed to control and address problems that occurred with other commonly used ceramics, such as silicon carbide, alumina, silicon nitride, aluminum nitride, and zirconia. Such ceramics fractured with ease, revealing scratches and cracks while mechanical and thermo-mechanical loads were applied to them. CMCs exhibit mechanical and thermal properties comparable with, and in some cases, even better than, the conventional superalloys used in aero-engines. However, their adoption relies on other variables as well, such as the cost of development, industrialization, manufacturing, and the availability of manufacturing technologies and systems.
  • 8.3K
  • 27 Apr 2023
Topic Review
Carbon fiber-reinforced Thermoplastic polymers
Carbon fiber-reinforced thermoplastic polymers are considered a promising composite for many industrial applications including in the automation, renewable energy, and aerospace industries. They exhibit exceptional properties such as a high strength-to-weight ratio and high wear resistance and stiffness, which give them an advantage over other conventional materials such as metals.
  • 6.7K
  • 17 Aug 2021
Topic Review
Mechanical Properties of Reinforced Bioplastics
Bioplastics are a type of plastic material that is bio-based, biodegradable, or both, depending on the source from which they were created.
  • 5.7K
  • 19 Sep 2022
Topic Review
Composite Material Applications
Composite materials are composed of two or more different materials having considerably different physical and/or chemical characteristics that, when merged, produce a material with attributes that differ from the separate elements. Composite materials are extensively utilized in the automobile, construction, transportation, aerospace, and renewable energy applications due to their durability, high strength, great quality, minimal maintenance, and low weight.
  • 5.6K
  • 08 Oct 2021
Topic Review
Metal Oxides for CO2 Capture and Conversion
Metal oxides are essential in determining the overpotential and product selectivity in the CO2reduction reactions (CO2RR). In contrast, developing efficient and stable metal oxides is a significant challenge that must be achieved to lower the production cost of fuels in the practical implementation of CO2RR technologies. 
  • 4.7K
  • 14 Apr 2022
Topic Review
Graphene, Graphene-Derivatives and Composites
Graphene has accomplished huge notoriety and interest from the universe of science considering its exceptional mechanical, physical and thermal properties. Graphene is an allotrope of carbon having one atom thick size and planar sheets thickly stuffed in a lattice structure resembling a honeycomb structure. Numerous methods to prepare graphene have been created throughout a limited span of time. Due to its fascinating properties, it has found some extensive applications to a wide variety of fields. So, we believe there is a necessity to produce a document of the outstanding methods and some of the novel applications of graphene. 
  • 4.1K
  • 09 Oct 2021
Topic Review
Single-Crystal Nickel-Cobalt-Manganese Cathode Research
The booming electric vehicle industry continues to place higher requirements on power batteries related to economic-cost, power density and safety. The positive electrode materials play an important role in the energy storage performance of the battery. The nickel-rich NCM (LiNixCoyMnzO2 with x + y + z = 1) materials have received increasing attention due to their high energy density, which can satisfy the demand of commercial-grade power batteries. Prominently, single-crystal nickel-rich electrodes with s unique micron-scale single-crystal structure possess excellent electrochemical and mechanical performance, even when tested at high rates, high cut-off voltages and high temperatures.
  • 3.8K
  • 27 Dec 2022
Topic Review
Classification of Solid Oxide Fuel Cells
Solid oxide fuel cells (SOFC) are promising, environmentally friendly energy sources. Many works are devoted to the study of materials, individual aspects of SOFC operation, and the development of devices based on them. This entry attempts to cover and structure the entire spectrum of SOFC concepts and designs that currently exist.
  • 3.7K
  • 13 Apr 2022
Topic Review
Recent Advances in Fabricating Wurtzite AlN
As a representative ultrawide bandgap (UWBG) semiconductor material, wurtzite aluminum nitride (AlN) material has many excellent properties such as high electron mobility (1100 cm2/Vs), high breakdown voltage (11.7 MV/cm), high piezoelectric coefficient, high thermal conductivity (320 W/m·K), high hardness (nine on the Mohs scale), high corrosion resistance, high chemical and thermal stability, as well as high bulk acoustic wave velocity (11,270 m/s).
  • 3.5K
  • 10 Jan 2022
Topic Review
Solvent-Free Synthesis of Zeolites
The traditional hydrothermal method to prepare zeolite will inevitably use a large amount of water as a solvent, which will lead to higher autogenous pressure, low efficiency, and wastewater pollution. The solvent-free method can be used to synthesize various types of zeolites by mechanical mixing, grinding, and heating of solid raw materials, which exhibits the apparent advantages of high yield, low pollution, and high efficiency. This review mainly introduces the development process of solvent-free synthesis, preparation of hierarchical zeolite, morphology control, synthesis mechanism and applications of solvent-free methods. It can be believed that solvent-free methods will become a research focus and have enormous industrial application potential.
  • 3.4K
  • 25 Mar 2021
Topic Review
Radio-Absorbing Materials and Technologies for Their Production
Radio waves cover a fairly wide spectrum of the frequency range (the range of waves used is from ultra-long to millimeter; the range is from centimeters and meters to thousands of kilometers) and are harmonic signals modulated in amplitude and frequency. The main source of powerful electromagnetic radiation is an antenna that radiates a flow of electromagnetic energy in a directionally or non-directionally into the surrounding space.
  • 3.2K
  • 17 Aug 2022
Topic Review
Applications of Natural Polymers-Based Materials
Natural polymers have emerged as promising candidates for the sustainable development of materials in areas ranging from food packaging and biomedicine to energy storage and electronics. 
  • 3.1K
  • 06 Jan 2022
Topic Review
Polytetrafluoroethylene-Based Solvent-Free Procedure for Lithium-Ion Batteries Manufacturing
Lithium-ion batteries (LIBs) have become popular for energy storage due to their high energy density, storage capacity, and long-term cycle life. Although binders make up only a small proportion of LIBs, they have become the key to promoting the transformation of the battery preparation process. Along with the development of binders, the battery manufacturing process has evolved from the conventional slurry-casting (SC) process to a more attractive solvent-free (SF) method. Compared with traditional LIBs manufacturing method, the SF method could dramatically reduce and increase the energy density due to the reduced preparation steps and enhanced electrode loading. Polytetrafluoroethylene (PTFE), as a typical binder, has played an important role in fabricating high-performance LIBs, particularly in regards to the SF technique. 
  • 3.1K
  • 15 Dec 2023
Topic Review
Dolomite as a Filler in a Polymer Composite
Polymers are being used in many applications all around the world. However, there are some drawbacks in the properties of polymers that could hamper their usage in certain applications. Therefore, a new material polymer composite was introduced. A polymer composite is a polymer-based material with the addition of a filler. Many researchers have reported the improvement in the properties of a polymer when a filler was introduced. This helps minimize the disadvantages of using a polymer. Fillers are materials added to resins or binders (polymer/concrete/metal/ceramic) to improve their specific properties as they are turned into a new form of material called a “composite.” Dolomite is a type of sedimentary carbonate rock that consists mainly of dolomite mineral. The use of dolomite in a polymer composite system has gained increasing attention in recent years after researchers successfully proved that it is capable of improving mechanical and physical properties of various polymeric materials. 
  • 3.0K
  • 09 Aug 2022
Topic Review
Silanes
Silanes, as organic-inorganic hybrid modifiers of hyperbranched polymer (HBP), are of great interest as they resulted in a tremendous improvement in HBP properties like increasing thermal, mechanical and electrical properties compared to that of organic-only moieties. The basic components of silanes are monomeric silicon (Si) compounds with four substituent groups attached to the Si atom, which can be of any combination of reactive or non-reactive inorganic or organic groups, which are the fundamental building blocks of silanes.
  • 2.9K
  • 14 Jun 2023
Topic Review
Fiber-Reinforced Geopolymer Composite
Fiber-reinforced geopolymer composite (FRGC) is emerging as one of the alternative materials for cement in the construction industry. FRGC is considered an eco-friendly material due to its role in the global reduction in emission of CO2 to the environment. Simultaneously, the composite provides good mechanical strength of flexural modulus, loss modulus, post-impact strength, and durability for a definite period at room and elevated temperatures. A positive aspect of the geopolymer matrix used for this composite is that could provide a finite period of durability at elevated temperatures without releasing toxic gases to the surroundings. Fibers enhanced the brittle behavior of the geopolymer matrix into ductile one with improved mechanical strength and residual impact strength.
  • 2.8K
  • 09 Jul 2021
Topic Review
Flexible Stretchable Electrode
Flexible electrode technology is the key to the wide application of flexible electronics. However, flexible electrodes will break when large deformation occurs, failing flexible electronics. It restricts the further development of flexible electronic technology. Flexible stretchable electrodes are a hot research topic to solve the problem that flexible electrodes cannot withstand large deformation. Flexible stretchable electrode materials have excellent electrical conductivity, while retaining excellent mechanical properties in case of large deformation.
  • 2.8K
  • 27 Apr 2022
Topic Review
Alloying Elements and Mechanical Characteristics of Mg-Based Materials
Magnesium alloys are widely employed in various applications due to their high strength-to-weight ratio and superior mechanical properties as compared to unalloyed Magnesium. Alloying is considered an important way to enhance the strength of the metal matrix composite but it significantly influences the damping property of pure magnesium, while controlling the rate of corrosion for Mg-based material remains critical in the biological environment. Therefore, it is essential to reinforce the magnesium alloy with a suitable alloying element that improves the mechanical characteristics and resistance to corrosion of Mg-based material. Biocompatibility, biodegradability, lower stress shielding effect, bio-activeness, and non-toxicity are the important parameters for biomedical applications other than mechanical and corrosion properties. The development of various surface modifications is also considered a suitable approach to control the degradation rate of Mg-based materials, making lightweight Mg-based materials highly suitable for biomedical implants. 
  • 2.7K
  • 01 Sep 2022
  • Page
  • of
  • 11
Academic Video Service