1000/1000
Hot
Most Recent
Carbon fiber-reinforced thermoplastic polymers are considered a promising composite for many industrial applications including in the automation, renewable energy, and aerospace industries. They exhibit exceptional properties such as a high strength-to-weight ratio and high wear resistance and stiffness, which give them an advantage over other conventional materials such as metals.
In an ever-evolving world, developing new sustainable materials with excellent properties while ensuring they fall into the category of circular economy materials is essential to meet industrial demands and prevent environmental pollution. New materials must overcome existing challenges such as high cost, recyclability, reliability, and energy consumption. For example, such materials for high-performance products need to be lightweight and strong to take diverse loading conditions, such as turbine blades in wind energy applications. They also must not create new problems regarding safety, availability, and processability. One of the main challenges of developing a new product is reducing the weight and increasing load-bearing capability at the same time [1][2][3][4]. One of the promising lightweight materials is carbon fiber (CF), characterized by high-strength, high-temperature resistance, and good chemical resistance. CF is non-toxic, low-density, has high wear resistance, and is a non-corrosive, recyclable material with an outstanding strength-to-weight ratio. Overall, it has exceptional thermal, mechanical, and electrical properties. CF is made when source materials such as synthetic polymers (polyacrylonitrile, pitch resin, or rayan spun) are carbonized through oxidation and thermal treatments (hydrolysis) at high temperatures while applying tension with final CF products’ appropriate controlled properties. It is well known that higher carbonization temperatures (up to 2500 °C) can achieve a high carbon content in CF. Today, CF-reinforced polymer matrix composite products are widely used in various applications due to their excellent mechanical, thermal, electrical, structural, and tribological properties. These applications include use in wind energy, aerospace, automobile, infrastructure, marine, and building and construction industries, as well as in sporting goods [4][5][6][7].
Researchers and developers have shown a great deal of interest in CFRTP composite due to its tremendous and wide range of properties and the potential of utilizing it in many industrial applications. These properties can be altered or enhanced by determining which materials and methods to use. Every choice made during the process will affect the composite properties; hence, it will either limit or expand the possibility of utilizing the material in specific industries. Some of these properties are crucial in every thinkable application, such as the mechanical strength of CFRTP.
The interfacial property is a primary factor because when the bond is strong, the load is transferred successfully from the matrix to the CF without causing any damages to the product. The interfacial bond between the CF and the thermoplastic matrix is seemingly weak due to their unidentical polarities. Thermoplastics are mostly polar, while CF is not. Several CF surface treatment methods have been investigated to solve this issue, including both chemicals and physical treatment approaches [7][18][11][12][14][19][20][21][22][23][24][25][26][27][28]. It has been reported that the adsorption of some polymeric particles using the electrophoresis process could be used for controlling the interfacial properties and adhesion between carbon fibers and thermoplastic resins through the control surface adhesion between CF and polymer matrix [29].
Due to excellent mechanical properties, the use of CF has grown remarkably. The CF-reinforced thermoplastic composites enhanced mechanical properties of final composites, including tensile strength, tensile modulus, flexural modulus, flexural strength, creep resistance, wear resistance, and toughness alongside other properties such as thermal and electrical conductivity. In the automotive, aerospace, and many other manufacturing industries, the usage of CF-reinforced polymers has rapidly improved in the last ten years due to the features mentioned above. However, the CF-reinforced composites have low wettability with most polymers because of their nonpolar surface characteristics. The low-interfacial bonding strength between the fibers and polymer matrices results in inadequate mechanical performance in composites [9][26][30][31][32]. The apparent ILSS of the composite is usually used to characterize adhesion quality between the fiber and matrix [33][34][30]. Likewise, a transverse fiber bundle test technique has been proposed to assess the fiber/matrix interfacial adhesion without making composite materials [35][36].
Besides the great mechanical properties of CF, it can be used for other tasks based on its multifunctional properties, including electrical conductivity and electromagnetic interference shielding. These properties of CF used as reinforcement in composite structures are the basis for several multifunctional applications. The significance of carbon is the extremely stable hexagonal plane grid and the planes’ delocalized electron cloud. The deformation and separation of the hexagonal carbon rings require high energy, which provides the CF’s strength at the macro level. The free electrons in the electron cloud make it an excellent electrical conductor. The electrical resistance of CFRTP depends mostly on the type of material used (precursors), the manufacturing conditions, the crystalline structure of polymer matrices, and treatments [2][3].
The primary thermal properties of CFRTP are thermal stability, thermal conductivity, melting temperature (Tm), and glass transition temperature (Tg). Researchers have investigated these properties extensively in an attempt to enhance them. The Tg of polymer composites normally depends on several factors such as the chemical structure and conformation of the polymers, degree of crystallinity, fiber dispersion, and interactions between the fiber and the polymer. Several studies have confirmed that the addition of fillers affects the Tg and the breadth of the transition due to changes in the mobility of the polymeric chains in the host matrix. By improving thermal properties, CFRTP becomes more suitable for fulfilling the already existing demands in various high-temperature sectors such as the aerospace, oil, and gas industries.
Overall, CFRTP composite materials have become a progressively used class of lightweight materials. The research and development activities carried out to investigate the relationships between processing, structure, and properties of CFRTP have resulted in a better fundamental understanding of these materials and led to an enhancement of their properties, offering more flexibility in the design for several possibilities applications. Therefore, CFRTP is a promising candidate in a variety of industrial applications. The properties of CFRTP composite materials such as high strength, low weight, and good thermal and electrical properties make it a preferred composite material compared to neat polymers, CFRPs, and even other metallic materials. However, the polymer matrix and the treatment method of CF prior to the manufacturing process is crucial and will affect the composite properties; hence, it will also affect the applications of the composite material. Thus, the large-volume market applications of CFRTP are still to be discovered. Nevertheless, with the huge demand of emerging industries, the opportunities for improvements, and the support of developing standardizations for testing and using CFRTP composite, more high-efficiency CFRTP products will be developed.
The outstanding properties exhibited by CFRTP are the primary motivation for further research and development. For example, these properties improved significantly with the addition of carbon fiber (CF) as a reinforcement compared to the neat polymer properties, which paves the way for CFRTP products in many industrial sectors. Furthermore, the modification of the CF’s surface is essential to improve the interfacial bond between the CF and the thermoplastic matrices. Either a chemical or physical modification technique will increase the oxygen concentration on the CF’s surface. Increasing oxygen makes the surface of CF more similar to the thermoplastic matrix in terms of polarity. Moreover, modifications have improved the filler/matrix bond and have had excellent positive effects on the mechanical properties of the composite compared to the untreated thermoplastic polymer/CF composites.
In general, the properties of various thermoplastic composites improved significantly with the addition of CF as a reinforcement compared to the neat thermoplastic properties. However, there is a variety in such improvements. This could be attributed to several factors, including manufacturing technique, processing parameters, thermoplastic type, CF type and orientation, loading, dimension, and surface treatment techniques, leading to interfacial adhesion and dispersion statues. All such aspects are essential to attain the anticipated properties, particularly mechanical properties, and to understand the relationships of the modification methods and mechanical properties of the final CFRTP composites.