Topic Review
Phanerozoic
The Phanerozoic Eon is the current geologic eon in the geologic time scale, and the one during which abundant animal and plant life has existed. It covers 541 million years to the present and began with the Cambrian Period when animals first developed hard shells preserved in the fossil record. The time before the Phanerozoic, called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons. The time span of the Phanerozoic starts with the sudden appearance of fossilized evidence of a number of animal phyla; the evolution of those phyla into diverse forms; the emergence and development of complex plants; the evolution of fish; the emergence of insects and tetrapods; and the development of modern fauna. Plant life on land appeared in the early Phanerozoic eon. During this time span, tectonic forces caused the continents to move and eventually collect into a single landmass known as Pangaea (the most recent supercontinent), which then separated into the current continental landmasses.
  • 8.3K
  • 08 Oct 2022
Topic Review
Lost Lands
Lost lands can be continents, islands or other regions existing during prehistory, having since disappeared as a result of catastrophic geological phenomena or slowly rising sea levels since the end of the last Ice Age. Lost lands, where they existed, are supposed to have subsided into the sea, leaving behind only a few traces or legends. The term can also be extended to mythological lands generally, to underground civilizations, or even to whole planets. The classification of lost lands as continents, islands, or other regions is in some cases subjective; for example, Atlantis is variously described as either a "lost island" or a "lost continent". Lost land theories may originate in mythology or philosophy, or in scholarly or scientific theories, such as catastrophic theories of geology.
  • 4.8K
  • 11 Oct 2022
Topic Review
Basalt
Basalt (/bəˈsɔːlt, ˈbæsɒlt, -sɔːlt/) is a mafic extrusive igneous rock formed from the rapid cooling of magnesium-rich and iron-rich lava exposed at or very near the surface of a terrestrial planet or a moon. More than 90% of all volcanic rock on Earth is basalt. Basalt lava has a low viscosity, due to its low silica content, resulting in rapid lava flows that can spread over great areas before cooling and solidification. Flood basalt describes the formation in a series of lava basalt flows.
  • 4.6K
  • 09 Nov 2022
Topic Review
Precambrian Supereon
The Precambrian (or Pre-Cambrian, sometimes abbreviated pЄ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic eon, which is named after Cambria, the Latinised name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time. The Precambrian (colored green in the timeline figure) is an informal unit of geologic time, subdivided into three eons (Hadean, Archean, Proterozoic) of the geologic time scale. It spans from the formation of Earth about 4.6 billion years ago (Ga) to the beginning of the Cambrian Period, about 541 million years ago (Ma), when hard-shelled creatures first appeared in abundance.
  • 4.5K
  • 18 Oct 2022
Topic Review
The White Sea
The White Sea is a small shallow semi-closed sea in the North-West of Russia. It is strongly affected by induced tides, so the tidal motion dominates in the sea. Sea ice is seasonal and the water salinity is less than in the neighbouring Barents sea due to strong river discharge. In this entry, we focus on the sources of data on the Sea.
  • 4.2K
  • 21 Jan 2021
Topic Review
Carbonatite-Related REE Deposits
The rare earth elements (REEs) have unique and diverse properties that make them function as an “industrial vitamin” and thus, many countries consider them as strategically important resources. China, responsible for more than 60% of the world’s REE production, is one of the REE‐rich countries in the world. Most REE (especially light rare earth elements (LREE)) deposits are closely related to carbonatite in China. Such a type of deposit may also contain appreciable amounts of industrially critical metals, such as Nb, Th and Sc. According to the genesis, the carbonatite‐related REE deposits can be divided into three types: primary magmatic type, hydrothermal type and carbonatite weathering‐crust type. This paper provides an overview of the carbonatite‐related endogenetic REE deposits, i.e., primary magmatic type and hydrothermal type. The carbonatite‐related endogenetic REE deposits are mainly distributed in continental margin depression or rift belts, e.g., Bayan Obo REE‐Nb‐Fe deposit, and orogenic belts on the margin of craton such as the Miaoya Nb‐REE deposit. The genesis of carbonatite‐related endogenetic REE deposits is still debated. It is generally believed that the carbonatite magma is originated from the low‐degree partial melting of the mantle. During the evolution process, the carbonatite rocks or dykes rich in REE were formed through the immiscibility of carbonate-silicate magma and fractional crystallization of carbonate minerals from carbonatite magma. The ore‐forming elements are mainly sourced from primitive mantle, with possible contribution of crustal materials that carry a large amount of REE. In the magmatic-hydrothermal system, REEs migrate in the form of complexes, and precipitate corresponding to changes of temperature, pressure, pH and composition of the fluids. A simple magmatic evolution process cannot ensure massive enrichment of REE to economic values. Fractional crystallization of carbonate minerals and immiscibility of melts and hydrothermal fluids in the hydrothermal evolution stage play an important role in upgrading the REE mineralization. Future work of experimental petrology will be fundamental to understand the partitioning behaviors of REE in magmatic-hydrothermal system through simulation of the metallogenic geological environment. Applying “comparative metallogeny” methods to investigate both REE fertile and barren carbonatites will enhance the understanding of factors controlling the fertility.
  • 3.7K
  • 17 Nov 2020
Topic Review
Groundwater Withdrawal-Induced Land Subsidence
Land subsidence is probably one of the most evident environmental effects of groundwater pumping. Globally, freshwater demand is the leading cause of this phenomenon. Land subsidence induced by aquifer system drainage can reach total values of up to 14.5 m. The spatial extension of this phenomenon is usually extensive and is often difficult to define clearly. Aquifer compaction contributes to many socio-economic effects and high infrastructure-related damage costs. Currently, many methods are used to analyze aquifer compaction. These include the fundamental relationship between groundwater head and groundwater flow direction, water pressure and aquifer matrix compressibility. Such solutions enable satisfactory modelling results. However, further research is needed to allow more efficient modelling of aquifer compaction. Recently, satellite radar interferometry (InSAR) has contributed to significant progress in monitoring and determining the spatio-temporal land subsidence distributions worldwide. Therefore, implementation of this approach can pave the way to the development of more efficient aquifer compaction models. This entry presents a comprehensive review of models used to predict land surface displacements caused by rock mass drainage, as well as (2) recent advances and (3) a summary of InSAR implementation over recent years to support the aquifer compaction modelling process. Therefore, the study presented would be of benefit to readers who are interested in the topic of interaction between the human population and the hydrogeological system in different regions. The research presented allows readers to better understand the factors, developments and effects of groundwater drainage and thus facilitate large - scale risk assessment and preventive planning.
  • 3.5K
  • 27 Oct 2020
Topic Review
List of Minerals L (Complete)
This list includes those recognised minerals beginning with the letter L. The International Mineralogical Association is the international group that recognises new minerals and new mineral names, however minerals discovered before 1959 did not go through the official naming procedure, although some minerals published previously have been either confirmed or discredited since that date. This list contains a mixture of mineral names that have been approved since 1959 and those mineral names believed to still refer to valid mineral species (these are called "grandfathered" species). The list is divided into groups: The data was exported from mindat.org on 29 April 2005; updated up to 'IMA2018'. The minerals are sorted by name, followed by the structural group (rruff.info/ima and ima-cnmnc by mineralienatlas.de, mainly) or chemical class (mindat.org and basics), the year of publication (if it's before of an IMA approval procedure), the IMA approval and the Nickel–Strunz code. The first link is to mindat.org, the second link is to webmineral.com, and the third is to the Handbook of Mineralogy (Mineralogical Society of America).
  • 3.4K
  • 05 Nov 2022
Topic Review
List of Peaks by Prominence
This is a list of mountain peaks ordered by their topographic prominence.
  • 3.4K
  • 18 Oct 2022
Topic Review
Land Administration and Blockchain Technology
Transparency of processes is very crucial across all institutions. In land administration processes, this is particularly important given the multi-stakeholder involvement. This paper argues that transparency of land administration processes involves carrying out and sharing up-to-date information on ownership, value, and the use of land and all of its associated resources among related institutions, right holders and other stakeholders, including third parties, as well as, acting on the information in an open manner. To achieve this in Ghana, blockchain technology has been identified as a complementary tool to the Ghanaian land administration system. Blockchain technology refers to a fully distributed crypto-graphical system that captures and stores a consistent, immutable and linear event log of the transactions between networked actors. The study identifies that given the potentials of blockchain technology which include; decentralization of transaction to all connected stakeholders, the immutability of records, hashing of records that allows for quick access to both historical and current land transactions' data, as well as the blockchain smart contract among others, land administration processes of land tenure, land valuation, land use planning, and land development will benefit from openness, and transparency, and human error elimination. It will also eliminate fraud, and double sales of land among other land challenges identified in the Ghanaian land sector.  The study proposes that for real-time land up-date in land information across all the land sector divisions; land valuation division, land title registration, survey and mapping division, and the public and vested land management division, a permisionless public blockchain architecture be adopted for the Ghanaian land system. This is because, in comparison to the other blockchain architecture types, the permisionless public blockchain allows more transparency, decentralization, openness, integration, and also adheres to privacy and data protection laws. This study and its results are particularly important not only to the Ghanaian land sector and its stakeholders, but to all other land administration systems in the sub-Saharan Africa region given the similarities in land administration across the region. In the Ghanaian context however, the study's findings if implemented will affect the institutional relations and shared authorities between all stakeholders which include government agencies, local chiefs and individual landowners. This is because, land decisions and land data will not become shared responsibility of all stakeholders and not dependent on just some few stakeholders. A successful implementation of blockchain in Ghana's land administration will however depend on negotiations and consensus amongst the different land stakeholder, education of all stakeholders on the technology, and its impacts, as well as standardization in the land administration processes across the different land divisions. This is because, where there is no such standardization, there is a high possibility of inconsistencies and irregularities in the processes which can affect the efficient working of the blockchain system.
  • 2.7K
  • 07 Jun 2021
Topic Review
Volcanic Eruptions
Volcanic eruptions are considered major (very large) when the Volcanic Explosivity Index (VEI) ≥ 5. The nature of the impacts of a VEI ≥ 5 eruption ranges from the destruction of a city, an entire region, climate disturbances as well as to air travel. Even an eruption with VEI < 5 may also have the potential to modify the environment and landscape particularly in proximal and medial facies, as well as surrounding human societies. The variety of environmental destructions due to volcanic eruption differs from primary (e.g., summit collapse, vegetation burning, death), secondary (e.g., atmospheric cooling, global warming), and tertiary (e.g., flood, famine, disease) effects. It is mostly generated by gas emissions, ashes, lava flow, pyroclastic flow, lahar, debris flow, and landslide which results in local and global impacts.
  • 2.6K
  • 14 Apr 2021
Topic Review
East China Sea Basin
The back-arc East China Sea Basin lies on extended continental crust at the leading edge of the Eurasian plate. Geology over the East China Sea Shelf Basin have been studied bits and pieces by various researchers over the past 20 years. This work is intended to provide a full review of the tectonic evolution over the East China Sea Basin. 
  • 2.5K
  • 30 Oct 2020
Topic Review
Geology of the Himalaya
The geology of the Himalayas is a record of the most dramatic and visible creations of the immense mountain range formed by plate tectonic forces and sculpted by weathering and erosion. The Himalayas, which stretch over 2400 km between the Namcha Barwa syntaxis at the eastern end of the mountain range and the Nanga Parbat syntaxis at the western end, are the result of an ongoing orogeny — the collision of the continental crust of two tectonic plates, namely, the Indian Plate thrusting into the Eurasian Plate. The Himalaya-Tibet region supplies fresh water for more than one-fifth of the world population, and accounts for a quarter of the global sedimentary budget. Topographically, the belt has many superlatives: the highest rate of uplift (nearly 10 mm/year at Nanga Parbat), the highest relief (8848 m at Mt. Everest Chomolangma), among the highest erosion rates at 2–12 mm/yr, the source of some of the greatest rivers and the highest concentration of glaciers outside of the polar regions. This last feature earned the Himalaya its name, originating from the Sanskrit for "the abode of the snow". From south to north the Himalaya (Himalaya orogen) is divided into 4 parallel tectonostratigraphic zones and 5 thrust faults which extend across the length of Himalaya orogen. Each zone, flanked by the thrust faults on its north and south, has stratigraphy (type of rocks and their layering) different from the adjacent zones. From south to north, the zones and the major faults separating them are the Main Frontal Thrust (MFT), Subhimalaya Zone (also called Sivalik), Main Boundary Thrust (MBT), Lesser Himalaya (further subdivided into the "Lesser Himalayan Sedimentary Zone (LHSZ) and the Lesser Himalayan Crystalline Nappes (LHCN)), Main Central thrust (MCT), Higher (or Greater) Himalayan crystallines (HHC), South Tibetan detachment system (STD), Tethys Himalaya (TH), and the Indus‐Tsangpo Suture Zone (ISZ). North of this lies the transhimalaya in Tibet which is outside the Himalayas. Himalaya has Indo-Gangetic Plain in south, Pamir Mountains in west in Central Asia, and Hengduan Mountains in east on China–Myanmar border. From east to west the Himalayas are divided into 3 regions, Eastern Himalaya, Central Himalaya, and Western Himalaya, which collectively house several nations and states.
  • 2.4K
  • 05 Dec 2022
Topic Review
Supercontinent Cycle
The supercontinent cycle is the quasi-periodic aggregation and dispersal of Earth's continental crust. There are varying opinions as to whether the amount of continental crust is increasing, decreasing, or staying about the same, but it is agreed that the Earth's crust is constantly being reconfigured. One complete supercontinent cycle is said to take 300 to 500 million years. Continental collision makes fewer and larger continents while rifting makes more and smaller continents.
  • 2.3K
  • 03 Nov 2022
Topic Review
Rockfall
A rockfall is defined as the “detachment, fall, rolling, and bouncing of rock fragments. It may occur singly or in clusters, but there is little dynamic interaction between the most mobile moving fragments, which interact mainly with the substrate (path)".
  • 2.2K
  • 04 Aug 2021
Topic Review
Precambrian
The Precambrian (or Pre-Cambrian, sometimes abbreviated pЄ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic eon, which is named after Cambria, the Latinised name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time. The Precambrian (colored green in the timeline figure) is an informal unit of geologic time, subdivided into three eons (Hadean, Archean, Proterozoic) of the geologic time scale. It spans from the formation of Earth about 4.6 billion years ago (Ga) to the beginning of the Cambrian Period, about 541 million years ago (Ma), when hard-shelled creatures first appeared in abundance.
  • 2.1K
  • 15 Nov 2022
Topic Review
Antigorite
Antigorite is a Mg-rich 1:1 trioctahedral-structured layered silicate mineral of the serpentine group. Antigorite with layered structure can be used as a lubricant and friction reducing material to repair the friction pair of iron agent on line.
  • 2.1K
  • 26 Oct 2020
Topic Review
Yangtze River Valley
The Yangtze River Valley is an important economic region and one of the cradles of human civilization. It is also the site of frequent floods, droughts, and other natural disasters. Conducting Holocene environmental archaeology research in this region is of great importance when studying the evolution of the relationship between humans and the environment and the interactive effects humans had on the environment from 10.0 to 3.0 ka BP, for which no written records exist.
  • 1.9K
  • 29 Apr 2021
Topic Review
Age of the Earth
The age of the Earth is estimated to be 4.54 ± 0.05 billion years (4.54 × 109 years ± 1%). This age may represent the age of the Earth's accretion, or core formation, or of the material from which the Earth formed. This dating is based on evidence from radiometric age-dating of meteorite material and is consistent with the radiometric ages of the oldest-known terrestrial and lunar samples. Following the development of radiometric age-dating in the early 20th century, measurements of lead in uranium-rich minerals showed that some were in excess of a billion years old. The oldest such minerals analyzed to date—small crystals of zircon from the Jack Hills of Western Australia—are at least 4.404 billion years old. Calcium–aluminium-rich inclusions—the oldest known solid constituents within meteorites that are formed within the Solar System—are 4.567 billion years old, giving a lower limit for the age of the Solar System. It is hypothesised that the accretion of Earth began soon after the formation of the calcium-aluminium-rich inclusions and the meteorites. Because the time this accretion process took is not yet known, and predictions from different accretion models range from a few million up to about 100 million years, the difference between the age of Earth and of the oldest rocks is difficult to determine. It is also difficult to determine the exact age of the oldest rocks on Earth, exposed at the surface, as they are aggregates of minerals of possibly different ages.
  • 1.8K
  • 21 Nov 2022
Topic Review
Geology
Geology (from grc γῆ 'earth', and -λoγία 'study of, discourse') is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth sciences, including hydrology and the atmospheric sciences, and so is treated as one major aspect of integrated Earth system science and planetary science. Geology describes the structure of the Earth on and beneath its surface, and the processes that have shaped that structure. It also provides tools to determine the relative and absolute ages of rocks found in a given location, and also to describe the histories of those rocks. By combining these tools, geologists are able to chronicle the geological history of the Earth as a whole, and also to demonstrate the age of the Earth. Geology provides the primary evidence for plate tectonics, the evolutionary history of life, and the Earth's past climates. Geologists use a wide variety of methods to understand the Earth's structure and evolution, including field work, rock description, geophysical techniques, chemical analysis, physical experiments, and numerical modelling. In practical terms, geology is important for mineral and hydrocarbon exploration and exploitation, evaluating water resources, understanding of natural hazards, the remediation of environmental problems, and providing insights into past climate change. Geology is a major academic discipline, and it is central to geological engineering and plays an important role in geotechnical engineering.
  • 1.8K
  • 27 Nov 2022
  • Page
  • of
  • 6
ScholarVision Creations