You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Biopolymer-Based Food Packaging Materials
Biopolymer-based packaging materials have become of greater interest to the world due to their biodegradability, renewability, and biocompatibility. Numerous biopolymers—such as starch, chitosan, carrageenan, polylactic acid, etc.—have been investigated for their potential application in food packaging. Reinforcement agents such as nanofillers and active agents improve the properties of the biopolymers, making them suitable for active and intelligent packaging.
  • 2.1K
  • 28 Jun 2023
Topic Review
Shape Memory Materials of Rubbers
Smart materials are much discussed in the current research scenario. The shape memory effect is one of the most fascinating occurrences in smart materials, both in terms of the phenomenon and its applications. Many metal alloys and polymers exhibit the shape memory effect (SME).
  • 2.1K
  • 06 Dec 2021
Topic Review
Application of Sol–Gels for Treatment of Gynaecological Conditions
Approaches for effective and sustained drug delivery to the female reproductive tract (FRT) for treating a range of gynaecological conditions remain limited. The development of versatile delivery platforms, such as soluble gels (sol–gels) coupled with applicators/devices, holds considerable therapeutic potential for gynaecological conditions. Sol–gel systems, which undergo solution-to-gel transition, triggered by physiological conditions such as changes in temperature, pH, or ion composition, offer advantages of both solution- and gel-based drug formulations. Furthermore, they have potential to be used as a suitable drug delivery vehicle for other novel drug formulations, including micro- and nano-particulate systems, enabling the delivery of drug molecules of diverse physicochemical character. Hence, such systems are are of profound significance in delivering the drugs to various parts of FRT for optimal treatment of various gynecological conditions which was not achievable using conventional drug delivery technologies.
  • 2.0K
  • 24 Feb 2022
Topic Review
Preparation of Organosiloxane Telechelics by Anionic Ring-opening Polymerization
Polydimethylsiloxanes (PDMS) telechelics are important both in industry and in academic research. They are used both in the free state and as part of copolymers and cross-linked materials. The most important, practically used, and well-studied method for the preparation of such PDMS is diorganosiloxane ring-opening polymerization (ROP) in the presence of nucleophilic or electrophilic initiators. Anionic ring opening polymerization (AROP) under the action of various nucleophilic reagents is widely used for the synthesis of high molecular weight polydiorganosiloxane telechelics with various organic surroundings of the siloxane chain. In the process of cyclosiloxane opening and chain growth, side processes may occur: depolymerization due to the breaking of the linear chain by the active center (backbiting reaction) with the formation of low molecular weight cyclic products, and chain transfer reaction, in which the terminal active site attacks the siloxane bond of another polymer chain, leading to a redistribution of macromolecules, which is also called equilibration
  • 2.0K
  • 24 Jun 2022
Topic Review
Composite Electromagnetic Shielding Applications
With advancements in the automated industry, electromagnetic inferences (EMI) have been increasing over time, causing major distress among the end-users and affecting electronic appliances. The issue is not new and major work has been done, but unfortunately, the issue has not been fully eliminated.
  • 2.0K
  • 19 Aug 2021
Topic Review
Toughening Approaches of Recycled Polystyrene
Several environmental and techno-economic assessments highlighted the advantage of placing polystyrene-based materials in a circular loop, from production to waste generation to product refabrication, either following the mechanical or thermochemical routes.
  • 2.0K
  • 22 Nov 2022
Topic Review
Methods of Preparation of UHMWPE Membranes
One of the materials that attracts attention as a potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). The methods used to prepare membranes from semicrystalline (SC) polymers, including UHMWPE, can be divided into two main groups: solvent-free and solvent-based methods.
  • 2.0K
  • 30 Nov 2022
Topic Review
Excipients in Pharmaceutical Additive Manufacturing
Additive manufacturing (AM), popularly known as three-dimensional printing (3DP), has been widely applied to the fabrication of prototypes through to functional parts in various manufacturing areas, including the pharmaceutical industry. The term “3D printing” technically refers to a broad collection of additive technologies based on the deposition of materials, like creating objects from the bottom up or layer by layer. Despite the technical differentiation between the terms, “3D printing” has become the common term.
  • 2.0K
  • 28 Feb 2024
Topic Review
Classification and Application of Natural Polymers
Natural polysaccharides are some of the most extensively used biopolymers in food, pharmaceutical, and medical applications, because they are renewable and have a high level of biocompatibility and biodegradability. The fundamental understanding required to properly exploit polysaccharides potential in the biocomposite, nanoconjugate, and pharmaceutical industries depends on detailed research of these molecules. Polysaccharides are preferred over other polymers because of their biocompatibility, bioactivity, homogeneity, and bioadhesive properties. Natural polysaccharides have also been discovered to have excellent rheological and biomucoadhesive properties, which may be used to design and create a variety of useful and cost-effective drug delivery systems. Polysaccharide-based composites derived from natural sources have been widely exploited due to their multifunctional properties, particularly in drug delivery systems and biomedical applications. These materials have achieved global attention and are in great demand because to their biochemical properties, which mimic both human and animal cells. 
  • 2.0K
  • 07 Feb 2024
Topic Review
Molecular Weight of Polyamides
Polyamides (PAs) undergo local environmental degradation, leading to a decline in their mechanical properties over time. PAs can experience various forms of degradation, such as thermal degradation, oxidation, hydrothermal oxidation, UV oxidation, and hydrolysis. In order to better comprehend the degradation process of PAs, it is crucial to understand each of these degradation mechanisms individually.
  • 2.0K
  • 09 Jan 2024
Topic Review
Biomedical Applications of Metal Organic Frameworks
Metal-organic frameworks (MOFs) , or metal-organic frameworks, are a new form of a porous coordination polymer. Novel materials have been developed because of technological advancements combined with material research. MOFs technology has been investigated for biomedical applications in this line. 
  • 2.0K
  • 14 Nov 2022
Topic Review
Design and Synthesis of Polyphosphodiesters
Polyacids containing –P(O)(OH)– fragment in the polymer backbone, or polyphosphodiesters (PPDEs), hold a special place among natural and synthetic polymers. The structural similarity of PPDEs to natural nucleic and teichoic acids, biocompatibility of PPDEs and their mimicking to biomolecules providing the ‘stealth effect’, high bone mineral affinity of PPDEs, and adjustable hydrolytic stability of PPDEs are the basis for various biomedical, industrial and household applications. Actual synthetic approaches to PPDEs are based on incredibly rich chemistry of organic phosphates and phosphonates, and include modern techniques such as catalytic ring-opening polymerization (ROP), acyclic diene metathesis (ADMET) polycondensation, and others.
  • 2.0K
  • 09 Jan 2023
Topic Review
Nanocellulose-Reinforced Rubber Matrix Composites
Research and development of nanocellulose (NC) and nanocellulose-reinforced composite materials have garnered substantial interest in recent years. Rubber is a common material with a large array of applications, greatly attributed to its mechanical strength and versatility. When rubber is extracted from its natural source, it needs to undergo a compounding stage where fillers are added to reinforce the material prior to further processing. The application of nanocellulose and its variants as a substitute of conventional fillers like carbon black (CB) and silica could further reduce environmental impacts and cost as it is derived from organic biomass. Incorporation of nanocellulose as a reinforcing material could also be extended to synthetic rubber composites to carry out a similar function of improving mechanical integrity.
  • 1.9K
  • 04 Mar 2021
Topic Review
Polymer Composites with Carbon Fillers
To address the low thermal conduction of the polymer materials, many kinds of thermally conductive fillers have been studied, and the carbon-based polymer composite is regarded as one of the most promising materials for the thermal management of the electric and electronic devices.
  • 1.9K
  • 25 Jun 2021
Topic Review
Overview of viable Bacteria Immobilisation
Bioremediation is a key process for reclaiming polluted soil and water by the use of biological agents. A commonly used approach aims to neutralise or remove harmful pollutants from contaminated areas using live microorganisms. Generally, immobilised microorganisms rather than planktonic cells have been used in bioremediation methods. Activated carbon, inorganic minerals (clays, metal oxides, zeolites), and agricultural waste products are acceptable substrates for the immobilisation of bacteria, although there are limitations with biomass loading and the issue with leaching of bacteria during the process. Various synthetic and natural polymers with different functional groups have been used successfully for the efficient immobilisation of microorganisms and cells. Promise has been shown using macroporous materials including cryogels with entrapped bacteria or cells in applications for water treatment and biotechnology. A cryogel is a macroporous polymeric gel formed at sub-zero temperatures through a process known as cryogelation. Macroporous hydrogels have been used to make scaffolds or supports for immobilising bacterial, viral, and other cells. The production of composite materials with immobilised cells possessing suitable mechanical and chemical stability, porosity, elasticity, and biocompatibility suggests that these materials are potential candidates for a range of applications within applied microbiology, biotechnology, and research. 
  • 1.9K
  • 25 Apr 2021
Topic Review
Bioplastic of Polyhydroxyalkanoates and Vegetal-Fibers as Biopackaging Alternatives
This is an overview of polyhydroxyalkanoate (PHA)–vegetal fiber composites, the effects of the fiber type, and the production method's impact on the mechanical, thermal, barrier properties, and biodegradability, all relevant for biopackaging. To acknowledge the behaviors and trends of the biomaterials reinforcement field, the researchers searched for granted patents focusing on bio-packaging applications and gained insight into current industry developments and contributions.
  • 1.9K
  • 23 Mar 2022
Topic Review
Aromatic Polyimide Films for Electronic Applications
Aromatic polyimides have excellent thermal stability, mechanical strength and toughness, high electric insulating properties, low dielectric constants and dissipation factors, and high radiation and wear resistance, among other properties, and can be processed into a variety of materials, including films, fibers, carbon fiber composites, engineering plastics, foams, porous membranes, coatings, etc. Aromatic polyimide materials have found widespread use in a variety of high-tech domains, including electric insulating, microelectronics and optoelectronics, aerospace and aviation industries, and so on, due to their superior combination characteristics and variable processability. In recent years, there have been many publications on aromatic polyimide materials, including several books available to readers. In this review, the representative progress in aromatic polyimide films for electronic applications, especially in our laboratory, will be described.
  • 1.9K
  • 05 Apr 2022
Topic Review
Methods of Making Lithium-Ion Batteries Membrane
Due to the growing demand for eco-friendly products, lithium-ion batteries (LIBs) have gained widespread attention as an energy storage solution. With the global demand for clean and sustainable energy, the social, economic, and environmental significance of LIBs is becoming more widely recognized. LIBs are composed of cathode and anode electrodes, electrolytes, and separators. Notably, the separator, a pivotal and indispensable component in LIBs that primarily consists of a porous membrane material, warrants significant research attention. 
  • 1.9K
  • 22 Sep 2023
Topic Review
Self-Healing Mechanisms and 3D Printing
Existing self-healing mechanisms are still very far from full-scale implementation, and most published work has only demonstrated damage cure at the laboratory level. Their rheological nature makes the mechanisms for damage cure difficult to implement, as the component or structure is expected to continue performing its function. In most cases, a molecular bond level chemical reaction is required for complete healing with external stimulations such as heating, light and temperature change. Such requirements of external stimulations and reactions make the existing self-healing mechanism almost impossible to implement in 3D printed products, particularly in critical applications.
  • 1.9K
  • 17 Jun 2021
Topic Review
Anion Exchange Membranes with Inorganic Fillers
Anion exchange membrane fuel cells (AEMFC) are clean energy conversion devices that are an attractive alternative to the more common proton exchange membrane fuel cells (PEMFCs), because they present, among others, the advantage of not using noble metals like platinum as catalysts for the oxygen reduction reaction. The AEMs are the central element of many technologically relevant devices, first and foremost alkaline membrane fuel cells (FC). These fuel cells can significantly reduce the amount of noble metal catalysts for the oxygen reduction reaction (ORR) and may represent the future of FC development.
  • 1.9K
  • 29 Nov 2021
  • Page
  • of
  • 23
Academic Video Service