Topic Review
Food Science's Chemical Element Compositions
In recent years, many analyses have been carried out to investigate the chemical components of food data. However, studies rarely consider the compositional pitfalls of such analyses. This is problematic as it may lead to arbitrary results when non-compositional statistical analysis is applied to compositional datasets. In this study, compositional data analysis (CoDa), which is widely used in other research fields, is compared with classical statistical analysis to demonstrate how the results vary depending on the approach and to show the best possible statistical analysis. For example, honey and saffron are highly susceptible to adulteration and imitation, so the determination of their chemical elements requires the best possible statistical analysis. Our study demonstrated how principle component analysis (PCA) and classification results are influenced by the pre-processing steps conducted on the raw data, and the replacement strategies for missing values and non-detects. Furthermore, it demonstrated the differences in results when compositional and non-compositional methods were applied. Our results suggested that the outcome of the log-ratio analysis provided better separation between the pure and adulterated data and allowed for easier interpretability of the results and a higher accuracy of classification. Similarly, it showed that classification with artificial neural networks (ANNs) works poorly if the CoDa pre-processing steps are left out. From these results, we advise the application of CoDa methods for analyses of the chemical elements of food and for the characterization and authentication of food products.
  • 1.1K
  • 24 Nov 2021
Topic Review
Atomic Layer Deposition on 2D Materials
Atomic layer deposition (ALD) of high-κ dielectrics on two-dimensional (2D) materials (including graphene and transition metal dichalcogenides) still represents a challenge due to the lack of out-of-plane bonds on the pristine surfaces of 2D materials, thus making the nucleation process highly disadvantaged. The typical methods to promote the nucleation (i.e., the predeposition of seed layers or the surface activation via chemical treatments) certainly improve the ALD growth but can affect, to some extent, the electronic properties of 2D materials and the interface with high-κ dielectrics. Hence, direct ALD on 2D materials without seed and functionalization layers remains highly desirable. In this context, a crucial role can be played by the interaction with the substrate supporting the 2D membrane. In particular, metallic substrates such as copper or gold have been found to enhance the ALD nucleation of Al2O3 and HfO2 both on monolayer (1 L) graphene and MoS2. Similarly, uniform ALD growth of Al2O3 on the surface of 1 L epitaxial graphene (EG) on SiC (0001) has been ascribed to the peculiar EG/SiC interface properties.
  • 1.0K
  • 15 Dec 2021
Topic Review
Treatments for Minimizing Sewage Sludge
Similar to other types of waste, sewage sludge (SS) must be minimized, not only to respect the European Directive 2018/851 on waste, but also because the cost of sludge management is approximately 50% of the total running costs of a wastewater treatment plant (WWTP). Usually, minimization technologies can involve sewage sludge production with three different strategies: (i) adopting a process in the water line that reduces the production of sludge; (ii) reducing the water content (dewatering processes) or (iii) reducing the fraction of volatile solids (stabilization).
  • 1.0K
  • 26 Oct 2020
Topic Review
Salts Hydrates and Composites
Salt hydrates are alloys of salts and water. Salt hydrates display high theoretical energy densities, which are promising materials in thermal energy storage (TES).
  • 1.0K
  • 25 Jan 2022
Topic Review
Multi-Material 3D Printing of Functional Ceramic Devices
As an emerging technology, multi-material 3D printing offers increased complexity and greater freedom in the design of functional ceramic devices because of its unique ability to directly construct arbitrary 3D parts that incorporate multiple material constituents without an intricate process or expensive tools.
  • 1.0K
  • 17 Nov 2022
Topic Review
Low-Temperature SCR Catalyst Development
In recent years, low-temperature SCR (Selective Catalytic Reduction) denitrification technology has been popularized in non-power industries and has played an important role in the control of industrial flue gas NOx emissions in China. Currently, the most commonly used catalysts in industry are V2O5-WO3(MoO3)/TiO2, MnO2-based catalysts, CeO2-based catalysts, MnO2-CeO2 catalysts and zeolite SCR catalysts. The flue gas emitted during industrial combustion usually contains SO2, moisture and alkali metals, which can affect the service life of SCR catalysts.
  • 1.0K
  • 31 Mar 2022
Topic Review
Fiber-Shaped Electronic Devices
Electronic fiber is a building block of electronic textiles (e-textiles) for developing wearable electronics. In practical applications, fiber-shaped devices have attracted great attention as a potential alternative to conventional planar-type electronic devices. Because of their structural features, which enable them to be sewn into various fabrics, electronic fibers are an ideal device platform for realizing the three-dimensional (3D) deformability, light weight, breathability, washability, and comfort required for e-textiles.
  • 1.0K
  • 06 Aug 2021
Topic Review
Chemical Rings
The epoxidized group, also known as the oxirane group, can be considered as one of the most crucial rings in chemistry. Due to the high ring strain and the polarization of the C–O bond in this three-membered ring, several reactions can be carried out. One can see such a functional group as a crucial intermediate in fuels, polymers, materials, fine chemistry, etc. 
  • 1.0K
  • 30 Aug 2021
Topic Review
Hybrid Engineered Water–Polymer Flooding (EWPF)
Hybrid EWPF has been experimentally investigated for both sandstone and carbonate reservoirs by various researchers. The idea behind hybrid EWPF is to enhance oil recovery by the combined effect of optimized injection water composition and polymer flooding. Most of the studies have shown the synergistic benefits of the hybrid method in terms of two- to four-fold decreases in the polymer adsorption, leading to 30–50% reductions in polymer consumption, making the project economically viable for carbonates. EWPF has resulted in 20–30% extra oil recovery in various carbonate coreflood experiments compared to high-salinity water flooding.
  • 1.0K
  • 26 Oct 2020
Topic Review
Ceramic-Based Hybrid Supercapacitors
Supercapacitors (SCs) have attracted considerable attention among various energy storage devices due to their high specific capacity, high power density, long cycle life, economic efficiency, environmental friendliness, high safety, and fast charge/discharge rates. SCs are devices that can store large amounts of electrical energy and release it quickly, making them ideal for use in a wide range of applications. They are often used in conjunction with batteries to provide a power boost when needed and can also be used as a standalone power source. They can be used in various potential applications, such as portable equipment, smart electronic systems, electric vehicles, and grid energy storage systems.
  • 996
  • 02 Nov 2022
Topic Review
The Technologies in H2S Removal from Gas Streams
Hydrogen sulfide is a toxic and corrosive gas; thus, in order to mitigate its environmental impact, its capture and removal from various emitting sources, natural and anthropogenic, is of a necessity. 
  • 996
  • 13 Mar 2023
Topic Review
Adsorption of Pesticides onto Clay Minerals
Adsorption of pesticides onto natural clay mineral relies on the use of adsorbents with minimal treatment beyond their preparation to provide a narrow size distribution and homoionic form by exchanging the naturally occurring interlamellar cations (in the case of smectites) by some alkaline (Na+ or K+) or alkaline earth (Ca2+or Mg2+) cation. Additional modifications include organophilization, intercalation with metal polycations and pillaring.  The adsorption capacity and strength of pesticides onto homoionic, organophilic and intercalated/pillared clay minerals depend on the chemical nature of the pesticide, surface area, and pore volume. Electrostatic interactions, hydrogen and coordinative bonds, surface complexations, and hydrophobic associations are the main interactions between pesticides and clay minerals.
  • 994
  • 29 Nov 2021
Topic Review
Self-Heating Mould for Composite Manufacturing
The shipbuilding industry, engine manufacturing, aviation, rocket and space technology are promising fields of application for polymeric composite materials. Shape-generating moulding tools with internal heating are used for the creation of a more economically viable method of moulding of internally heated composite structures. The use of a fine-fibered resistive structure in the heated tools allows implementation of effective heating of the composite and elimination of the need for expensive and energy-intensive heating equipment.
  • 991
  • 26 Nov 2021
Topic Review
Gellan
Gellan is a water-soluble gum that structurally exists as a tetrasaccharide comprised of 20% glucuronic acid, 60% glucose and 20% rhamnose, for which various food, non-food and biomedical applications have been reported.
  • 987
  • 08 May 2021
Topic Review
Sol-Gel and Layer-by-Layer Coatings
The use of urface-engineered coatings for the fire protection of cotton fabrics is continously growing. In this context, two main approaches have been extensively investigated, namely sol-gel derived coatings and layer-by-layer assemblies. These approaches are both capable of providing treated fabrics with outstanding flame-retardant features, when exposed to a flame or an irradiative heat flux.  This review work aims at discussing the recent progresse with respect to both strategies, highlighting current limitations, open challenges, and possible further developments.
  • 986
  • 01 Nov 2020
Topic Review
Solar Reactors for Hydrogen Production
Green hydrogen production is at the core of the transition away from conventional fuels. Along with popularly investigated pathways for hydrogen production, thermochemical water splitting using redox materials is an interesting option for utilizing thermal energy, as this approach makes use of temperature looping over the material to produce hydrogen from water. Solar reactors have conventionally been used for such reactions, as temperatures up to 2000 °C can be reached, which are beneficial for the reduction of the redox material. 
  • 982
  • 27 Apr 2022
Topic Review
Supercritical Fluid Extraction as a Green Extraction
Extraction is a technique of isolating components from natural materials using chemical or physical methods. The world has turned to using green extraction as part of its efforts to preserve the environment. Green extraction is based on procedures that require less energy, allow for the use of alternative solvents and sustainable natural resources, and offer a safe and high-quality extract. Supercritical fluid extraction (SFE) procedures are compatible with the principles of green extraction.
  • 976
  • 26 Oct 2022
Topic Review
Luminescent Micelles for Sensing Nitroaromatic and Nitramine Explosives
Luminescent micelles are extensively studied molecular scaffolds used in applied supramolecular chemistry.
  • 968
  • 28 Jan 2022
Topic Review
Nuclear Resonance Vibrational Spectroscopy
Nuclear resonant vibrational spectroscopy (NRVS) is a synchrotron radiation (SR)-based nuclear inelastic scattering spectroscopy that measures the phonons (i.e., vibrational modes) associated with the nuclear transition. It has distinct advantages over traditional vibration spectroscopy and has wide applications in physics, chemistry, bioinorganic chemistry, materials sciences, and geology, as well as many other research areas.
  • 966
  • 17 Aug 2021
Topic Review
Sustainable Synthesis of MXenes
MXenes provide a major drawback involving environmentally harmful and toxic substances for its general fabrication in large-scale production and employing a high-temperature solid-state reaction followed by selective etching. Meanwhile, how MXenes are synthesized is essential in directing their end uses. Therefore, making strategic approaches to synthesize greener, safer, more sustainable, and more environmentally friendly MXenes is imperative to commercialize at a competitive price. 
  • 946
  • 17 Jan 2023
  • Page
  • of
  • 15
ScholarVision Creations