You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Aerobic Glycolysis in Cancer Cells
Aerobic glycolysis in cancer cells, which involves the production of lactate as the end product of glucose breakdown even in the presence of adequate oxygen, is the foundation for the current interest in the cancer-cell-specific reprograming of metabolic pathways. The renewed interest in cancer cell metabolism has now gone well beyond the original Warburg effect related to glycolysis to other metabolic pathways that include amino acid metabolism, one-carbon metabolism, the pentose phosphate pathway, nucleotide synthesis, antioxidant machinery, etc. Since glucose and amino acids constitute the primary nutrients that fuel the altered metabolic pathways in cancer cells, the transporters that mediate the transfer of these nutrients and their metabolites not only across the plasma membrane but also across the mitochondrial and lysosomal membranes have become an integral component of the expansion of the Warburg effect.
  • 1.2K
  • 31 Jan 2024
Topic Review
Naringenin
Naringenin, a natural flavanone, was first identified from extracts of the dormant peach (Prunus persica) flower buds, with the chemical name of 5,7,4′-trihydroxyflavanone.
  • 1.2K
  • 25 Dec 2020
Topic Review
Long Non-Coding RNAs in Cardiovascular Diseases
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. It is estimated that approximately 18.5 million people die annually on account of these diseases, with a third of these people dying under the age of 70 years. Identifying those most affected by CVDs and ensuring they receive the appropriate treatment can prevent premature deaths. Furthermore, the development of new therapeutic strategies and biomarkers with the potential to predict the progression of CVDs is fundamental to reducing mortality worldwide. CVDs can be defined as disorders that affect the heart or blood vessels such as heart failure, coronary heart disease, cerebrovascular disease, peripheral arterial disease, and congenital heart disease.
  • 1.2K
  • 30 Oct 2021
Topic Review
Oxytocin-System
Oxytocin (OXT) is  hypothalamic neuropeptide synthetized in the brain by magnocellular and parvo cellular neurons of the paraventricular, supraoptic and accessory nuclei of the hypothalamus. OXT acts in central and peripheral nervous system via G-protein-coupled receptors. The classical physiological functions of OXT are uterine contractions, the milk ejection reflex during lactation, penile erection and sexual arousal, but recent studies have demonstrated that OXT may has anti-inflammatory and anti-oxidant properties and regulates the immune and anti-inflammatory responses. In the pathogenesis of various neurodegenerative diseases, microglia are present in active form and release high levels of pro-inflammatory cytokines and chemokines,  that are implicated in the process of neural injury.  A promising treatment for neurodegenerative diseases involves new therapeutic approaches targeting activated microglia. Recent studies have reported that OXT exerts neuroprotective effects through inhibition of production of pro-inflammatory mediators, and in development of correct neural circuitry. The focus of this review is to attribute a new important role of OXT in neuroprotection through microglia-OXT interaction of immature and adult brain. In  addition, we also analyzed the strategies that could enhance its delivery in the brain to amplificated its positive effects .  
  • 1.2K
  • 28 Sep 2021
Topic Review
Mesenchymal Stromal/Stem Cells
Mesenchymal stromal/stem cells (MSCs) are multipotent adult stem cells that support homeostasis during tissue regeneration.
  • 1.2K
  • 01 Mar 2021
Topic Review
Polyphenoloxidase (PPO)
Fresh-cut produce are quite popular among consumers due to their eating ease, high quality and functional content. However, some of the processing steps taking place during minimal processing (such as cutting, peeling, draining, etc.) might speed up decay, e.g., microbial growth, dehydration or browning. When it comes to the latter, polyphenol oxidase (PPO) plays an important role, being the center of many works focused on the understanding of its reaction mechanism and the application of conservative techniques. The aim of this review study was to compare recent research about the effect of PPO on minimally processed fruits and vegetables, trying to understand the way it acts, the measurement of its activity and current treatments, such as modified atmosphere packaging, washing treatments or edible coatings, among others. In conclusion, the combination of conservation techniques (that is, hurdle technology) is vital to guarantee global quality in minimally processed fruits and vegetables, including synergistic effects which will allow the use of mild treatment conditions to decrease PPO activity. However, further research is required to clearly understand PPO inhibition in trendy techniques such as irradiation. 
  • 1.2K
  • 10 Sep 2021
Topic Review
Bladder Ischemia
The concept of bladder ischemia as a contributing factor to detrusor overactivity and lower urinary tract symptoms (LUTS) is evolving. Bladder ischemia as a consequence of pelvic arterial atherosclerosis was first documented in experimental models and later in elderly patients with LUTS. It was shown that early-stage moderate ischemia produces detrusor overactivity, while prolonged severe ischemia provokes changes consistent with detrusor underactivity. Recent studies imply a central role of cellular energy sensors, cellular stress sensors, and stress response molecules in bladder responses to ischemia. The cellular energy sensor adenosine monophosphate-activated protein kinase was shown to play a role in detrusor overactivity and neurodegeneration in bladder ischemia.
  • 1.2K
  • 15 Dec 2021
Topic Review
The Bile Salt Export Pump
The bile salt export pump (BSEP/ABCB11) is responsible for the transport of bile salts from hepatocytes into bile canaliculi. Malfunction of this transporter results in progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2) and intrahepatic cholestasis of pregnancy (ICP). 
  • 1.2K
  • 10 Feb 2021
Topic Review
Role of Neuroinflammation on Migraine
Neurogenic inflammation in migraine is mainly characterized by the release of neuropeptides such as CGRP and substance P from the trigeminal nerve, leading to arterial vasodilation, plasma protein extravasation, and mast cell degranulation. The involvement of these neuropeptides in migraine is evident, and pro-inflammatory cytokines or chemokines may be involved in this series of reactions.
  • 1.2K
  • 26 Aug 2021
Topic Review
Role of PARP in TNBC
Triple-negative breast cancer is a combative cancer type with a highly inflated histological grade that leads to poor theragnostic value. Gene, protein, and receptor-specific targets have shown effective clinical outcomes in patients with TNBC. Cells are frequently exposed to DNA-damaging agents. DNA damage is repaired by multiple pathways; accumulations of mutations occur due to damage to one or more pathways and lead to alterations in normal cellular mechanisms, which lead to development of tumors. Advances in target-specific cancer therapies have shown significant momentum; most treatment options cause off-target toxicity and side effects on healthy tissues. PARP (poly(ADP-ribose) polymerase) is a major protein and is involved in DNA repair pathways, base excision repair (BER) mechanisms, homologous recombination (HR), and nonhomologous end-joining (NEJ) deficiency-based repair mechanisms. DNA damage repair deficits cause an increased risk of tumor formation. Inhibitors of PARP favorably kill cancer cells in BRCA-mutations. For a few years, PARPi has shown promising activity as a chemotherapeutic agent in BRCA1- or BRCA2-associated breast cancers, and in combination with chemotherapy in triple-negative breast cancer.
  • 1.2K
  • 29 Oct 2021
Topic Review
Extracellular Heat Shock Proteins
Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses.
  • 1.2K
  • 20 Apr 2022
Topic Review
Toxic Effects of Highly Active Antiretroviral Therapy
Highly active antiretroviral therapy (HAART) comprises a combination of two or three antiretroviral (ARV) drugs that are administered together in a single tablet. These drugs target different steps within the human immunodeficiency virus (HIV) life cycle, providing either a synergistic or additive antiviral effect; this enhances the efficiency in which viral replication is suppressed. HIV cannot be completely eliminated, making HAART a lifetime treatment. With long-term HAART usage, an increasing number of patients experience a broadening array of complications, and this significantly affects their quality of life, despite cautious use. 
  • 1.2K
  • 08 Oct 2022
Topic Review Video
Plant-Derived Extracellular Vesicles for Next-Generation Drug Delivery
Plant cells release tiny membranous vesicles called extracellular vesicles (EVs), which are rich in lipids, proteins, nucleic acids, and pharmacologically active compounds. These plant-derived EVs (PDEVs) are safe and easily extractable and have been shown to have therapeutic effects against inflammation, cancer, bacteria, and aging. They have shown promise in preventing or treating colitis, cancer, alcoholic liver disease, and even COVID-19. PDEVs can also be used as natural carriers for small-molecule drugs and nucleic acids through various administration routes such as oral, transdermal, or injection. The unique advantages of PDEVs make them highly competitive in clinical applications and preventive healthcare products in the future.
  • 1.2K
  • 31 May 2023
Topic Review
Reactive Oxygen Species in the Brain
Reactive oxygen and nitrogen species are crucial contributors to the age-dependent decline in all tissues. Neural tissue, one of the main oxygen consumers in the mammalian body, is especially prone to reactive species-mediated damage. Brain cells, including neurons, astrocytes, and microglia, produce reactive oxygen species (ROS) by specific enzymatic systems, including complexes of the mitochondrial respiratory chain, multienzyme flavin-containing complexes, monoamine and xanthine oxidases, microglial and endothelial NADPH oxidases and cyclooxygenases in addition to non-enzymatic and potentially uncontrolled mechanisms of ROS production, such as autooxidation of quinones or other aromatic compounds. Nitric oxide produced by nitric oxide synthases powers the conversion of ROS into reactive nitrogen species (RNS). Both ROS and RNS play important signaling roles and are also capable of modifying other molecules such as proteins, nucleic and fatty acids, lipids and carbohydrates. The antioxidant system, comprising low molecular mass antioxidants (e.g., tocopherol, ascorbic acid and glutathione) and high molecular mass antioxidants such as enzymes (e.g., catalases, peroxidases, superoxide dismutases) and others, protects cells from potential damage caused by ROS or RNS. Powering antioxidant systems by NADPH provides neural tissue with defense against ROS but may also trigger ROS production by NADPH oxidases and cyclooxygenases. In turn, mitochondria start using ketone bodies as an energy source under certain conditions. Increased steady-state levels of ROS and RNS, along with the aforementioned ROS-modified molecules, activate the organisms’ immune system including brain’s microglia.
  • 1.2K
  • 09 Nov 2021
Topic Review
CYP21A2 Deficiency
Deficiency of 21-hydroxylase enzyme (CYP21A2) represents 90% of cases in congenital adrenal hyperplasia (CAH), an autosomal recessive disease caused by defects in cortisol biosynthesis. Computational prediction and functional studies are often the only way to classify variants to understand the links to disease-causing effects.
  • 1.2K
  • 29 Mar 2022
Topic Review
Silk Fibroin-Based Therapeutics
Silk fibroin, the fibrous structural-protein component in silk, has emerged as a promising treatment for these impaired processes by promoting functional tissue regeneration. Silk fibroin’s dynamic properties allow for customizable nanoarchitectures, which can be tailored for effectively treating several wound healing impairments. Different forms of silk fibroin include nanoparticles, biosensors, tissue scaffolds, wound dressings, and novel drug-delivery systems. Silk fibroin can be combined with other biomaterials, such as chitosan or microRNA-bound cerium oxide nanoparticles (CNP), to have a synergistic effect on improving impaired wound healing.
  • 1.2K
  • 01 Apr 2022
Topic Review
Carotenoids Antioxidant and Anti-Inflammatory Effects in Mood Disorders
Depression has a multifactorial etiology comprising family history and unemployment. Antioxidant supplementation has been found to combat various stress-induced psychiatric disorders, including depression and anxiety. A growing body of evidence indicates that carotenoids have both antioxidant and anti-inflammatory. Studies also suggest that poor dietary intake, particularly low intakes of fruit and vegetables and high intakes of fast food and other convenience foods, may increase the risk of developing depression. Thus, dietary interventions have the potential to help mitigate the risk of mental health decline in both the general population and those with mood disorders. 
  • 1.2K
  • 17 Mar 2023
Topic Review
Extracellular Vesicles in Neurogenic Niches
Adult neurogenesis, involving the generation of functional neurons from adult neural stem cells (NSCs), occurs constitutively in discrete brain regions such as hippocampus, sub-ventricular zone (SVZ) and hypothalamus. The intrinsic structural plasticity of the neurogenic process allows the adult brain to face the continuously changing external and internal environment and requires coordinated interplay between all cell types within the specialized microenvironment of the neurogenic niche. NSC-, neuronal- and glia-derived factors, originating locally, regulate the balance between quiescence and self-renewal of NSC, their differentiation programs and the survival and integration of newborn cells. Extracellular Vesicles (EVs) are emerging as important mediators of cell-to-cell communication, representing an efficient way to transfer the biologically active cargos (nucleic acids, proteins, lipids) by which they modulate the function of the recipient cells. At present, little is known on the physiological role of EVs in neurogenic niches. 
  • 1.2K
  • 02 Jan 2021
Topic Review
Selenium and Ageing
Selenium (Se) is an essential dietary trace element that plays an important role in the prevention of inflammation, cardiovascular diseases, infections, and cancer. Selenoproteins contain selenocysteine in the active center and include, i.a., the enzymes thioredoxin reductases (TXNRD1–3), glutathione peroxidases (GPX1–4 and GPX6) and methionine sulfoxide reductase, involved in immune functions, metabolic homeostasis, and antioxidant defense. Ageing is an inevitable process, which, i.a., involves an imbalance between antioxidative defense and reactive oxygen species (ROS), changes in protein and mitochondrial renewal, telomere attrition, cellular senescence, epigenetic alterations, and stem cell exhaustion. These conditions are associated with mild to moderate inflammation, which always accompanies the process of ageing and age-related diseases. In older individuals, Se, by being a component in protective enzymes, operates by decreasing ROS-mediated inflammation, removing misfolded proteins, decreasing DNA damage, and promoting telomere length. Se-dependent GPX1–4 and TXNRD1–3 directly suppress oxidative stress. Selenoprotein H in the cell nucleus protects DNA, and selenoproteins residing in the endoplasmic reticulum (ER) assist in the removal of misfolded proteins and protection against ER stress.
  • 1.2K
  • 11 Nov 2021
Topic Review
Pulmonary Stem Cell Senescence and Differentiation Disorders
Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis. Notably, the TGF-β signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis.
  • 1.2K
  • 18 Mar 2022
  • Page
  • of
  • 133
Academic Video Service