Oxytocin-System
Edit

Oxytocin (OXT) is  hypothalamic neuropeptide synthetized in the brain by magnocellular and parvo cellular neurons of the paraventricular, supraoptic and accessory nuclei of the hypothalamus. OXT acts in central and peripheral nervous system via G-protein-coupled receptors. The classical physiological functions of OXT are uterine contractions, the milk ejection reflex during lactation, penile erection and sexual arousal, but recent studies have demonstrated that OXT may has anti-inflammatory and anti-oxidant properties and regulates the immune and anti-inflammatory responses. In the pathogenesis of various neurodegenerative diseases, microglia are present in active form and release high levels of pro-inflammatory cytokines and chemokines,  that are implicated in the process of neural injury.  A promising treatment for neurodegenerative diseases involves new therapeutic approaches targeting activated microglia. Recent studies have reported that OXT exerts neuroprotective effects through inhibition of production of pro-inflammatory mediators, and in development of correct neural circuitry. The focus of this review is to attribute a new important role of OXT in neuroprotection through microglia-OXT interaction of immature and adult brain. In  addition, we also analyzed the strategies that could enhance its delivery in the brain to amplificated its positive effects .

 

Oxytocin microglia neuroprotection

1. Introduction

Oxytocin (OXT) is expressed firstly as an inactive precursor by the OXT gene located on chromosome 20. After undergoing a series of post-translational hydrolysis, this inactive precursor is converted to an active OXT[1]. OXT is synthesized along with its carrier protein neurophysin I. OXT is put into vesicles and axonally carried into the nerve endings in the neurohypophysis, where it is either stored or released into the bloodstream[2][3].

OXT is also synthesized in various peripheral tissues such as placenta, uterus, corpus luteum, amnion, testis, thymus, pancreas and kidney[4].

2. Receptor

OXT binds to the oxytocin receptor (OXTR). The OXTR is a 389-amino acid belonging to the G-protein-coupled transmembrane receptor superfamily[5]. The human OXTR gene is located on chromosome 3 at locus 3p25.

The OXTR is bound by OXT, a neuropeptide composed of nine amino acids (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly). The secondary structure of OTX is formed by a ring, with a disulphide connection between the first and sixth cysteine, and has a very short tail comprising three amino acids. Studies conducted in an in vitro analyzing homology model, a test of mutagenesis and pharmacological aspects[6][7][8][9][10] have shown that while the tail interacts with the OXTR regions exhibited in an extracellular space, the cyclic part reaches the deep part of a receptor’s transmembrane core, where it has an interaction with residues located in TMH5 and TMH6.

The site of oxytocin receptor mRNA in the brain offers a possibility to see the distribution of oxytocin binding[11], providing an accurate map of the anatomical geography of the oxytocin system in the brain. Seminal animal researches using histochemical and immunohistochemical techniques have shown high concentrations of OXTR mRNA in the hypothalamus, ventral pallidum, amygdala, olfactory bulb and the dorsal vagal nucleus in rodents[12][13]. OXTR mRNA sites in rodent brains re well-known[14], but their anatomical distribution across the human brain is poorly understood.

A growing body of evidence suggests that changes in the epigenetic regulation of the oxytocin receptor gene gives the oxytocin system flexibility in response to various events, particularly in childhood. Indeed, a large number of recent studies have shown a single-nucleotide polymorphism association in oxytocin receptor genes and the social behavior and pathogenesis of psychiatric disorders[15].

Expression and binding of the OXTR in rat and mouse brains using radiolabeled ligand have been described previously[16]. Recently, a binding approach showed that commercially available radioligands can be used in combination with selective competitors to reveal specific distributions of both OXTR in postmortem human brain tissue. However, despite recent efforts, there are currently no in vivo neuroimaging agents for OXTR for PET imaging (Positron Emission Tomography), a technique that would be invaluable in research using humans and nonhuman primates)[17].

The activation of OXTR is associated with the activation of a number of various intracellular cascades of events that facilitate the OXT pathway[4]. OXTR is expressed within the peripheral organs and centrally in the brain[18]. Quintana et al. very recently identified the anatomical distribution of the oxytocin pathway of mRNA expression in the human brain in order to identify its functional importance and supposed gene interactions. They found that the oxytocin signaling system acts synergistically with dopaminergic and muscarinic acetylcholine signaling systems by exerting its complex effects on comprehension[19].

The OXT pathway is a multifaceted system associated with various biological functions. An increasing number of studies have reported the importance of the oxytocin system in the human development[20][21], modulation of pain processing[22] and feeding behaviors[23]. OXT has an important role in bird-related phenomena, and it is normally used clinically for the induction and increase of labor[12]. OXT is implicated in the contraction of smooth muscles during parturition and lactation. OXT is also involved in tolerance, cognition, adaptation and sexual and maternal behavior, as well as in the regulation of cardiovascular functions[24].

In addition, OXT was found in many areas of the brain and functions as a neurotransmitter that modulates a variety of social behaviors such as social cognition, nurturing and social bonding[25][26][27][28][29]. Further, OXT has been shown to have both antidiuretic and vasodilatory effects leading to an increased cerebral, coronary and renal blood flow[30][31][32].

References

  1. M D Guillou; M Camier; C Clamagirand; Evidence for the presence of pro-oxytocin/neurophysin-converting enzyme in the human ovary. Journal of Endocrinology 1994, 142, 345-352, 10.1677/joe.0.1420345.
  2. Brownstein, M.J.; Russell, J.T.; Gainer, H. Synthesis, transport, and release of posterior pituitary hormones. Science 1980, 207, 373–378.
  3. Chatterjee, O.; Patil, K.; Sahu, A.; Gopalakrishnan, L.; Mol, P.; Advani, J.; Mukherjee, S.; Christopher, R.; Prasad, T.S. An overview of the oxytocin-oxytocin receptor signaling network. J. Cell Commun. Signal 2016, 10, 355–360.
  4. Gerald Gimpl; Falk Fahrenholz; The oxytocin receptor system: structure, function, and regulation.. Physiological Reviews 2001, 81, 629-683, 10.1152/physrev.2001.81.2.629.
  5. Sarah Arrowsmith; Susan Wray; Oxytocin: Its Mechanism of Action and Receptor Signalling in the Myometrium. Journal of Neuroendocrinology 2014, 26, 356-369, 10.1111/jne.12154.
  6. Chini, B.; Mouillac, B.; Ala, Y.; Balestre, M.N.; Trumpp-Kallmeyer, S.; Hoflack, J.; Elands, J.; Hibert, M.; Manning, M.; Jard, S. Tyr115 is the key residue for determining agonist selectivity in the V1a vasopressin receptor. EMBO J. 1995, 14, 2176–2182.
  7. Fanelli, F.; Barbier, P.; Zanchetta, D.; de Benedetti, P.G.; Chini, B. Activation mechanism of human oxytocin receptor: A combined study of experimental and computer-simulated mutagenesis. Mol. Pharmacol. 1999, 56, 214–225.
  8. Favre, N.; Fanelli, F.; Missotten, M.; Nichols, A.; Wilson, J.; di Tiani, M.; Rommel, C.; Scheer, A. The DRY motif as a molecular switch of the human oxytocin receptor. Biochemistry 2005, 44, 9990–10008.
  9. Frantz, M.C.; Rodrigo, J.; Boudier, L.; Durroux, T.; Mouillac, B.; Hibert, M. Subtlety of the structure-affinity and structure efficacy relationships around a nonpeptide oxytocin receptor agonist. J. Med. Chem. 2010, 53, 1546–1562.
  10. Busnelli, M.; Kleinau, G.; Muttenthaler, M.; Stoev, S.; Manning, M.; Bibic, L.; Howell, L.A.; McCormick, P.J.; Di Lascio, S.; Braida, D.; et al. Design and characterization of Superpotent bivalent ligands targeting oxytocin receptor dimers via a channel-like structure. J. Med. Chem. 2016, 59, 7152–7166.
  11. Larry J. Young; Scott Muns; Zuoxin Wang; Thomas R. Insel; Changes in oxytocin receptor mRNA in rat brain during pregnancy and the effects of estrogen and interleukin-6.. Journal of Neuroendocrinology 1997, 9, 859-865, 10.1046/j.1365-2826.1997.00654.x.
  12. Dogra, Y.; Suri, V.; Aggarwal, N.; Dogra, R.K. Induction of labor with oxytocin in pregnancy with low-risk heart disease: A randomized controlled trial. Turk. J. Obstet. Gynecol. 2019, 16, 213–218.
  13. Adan, R.A.; Van Leeuwen, F.W.; Sonnemans, M.A.; Brouns, M.; Hoffman, G.; Verbalis, J.G.; Burbach, J.P. Rat oxytocin receptor in brain, pituitary, mammary gland, and uterus: Partial sequence and immunocytochemical localization. Endocrinology 1995, 136, 4022–4028.
  14. T. R. Insel; L. E. Shapiro; Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles.. Proceedings of the National Academy of Sciences 1992, 89, 5981-5985, 10.1073/pnas.89.13.5981.
  15. Krzysztof Maria Wilczyński; Andrzej Siwiec; Małgorzata Janas-Kozik; Systematic Review of Literature on Single-Nucleotide Polymorphisms Within the Oxytocin and Vasopressin Receptor Genes in the Development of Social Cognition Dysfunctions in Individuals Suffering From Autism Spectrum Disorder. Frontiers in Psychology 2019, 10, 380, 10.3389/fpsyt.2019.00380.
  16. Benjamin Jurek; Inga D. Neumann; The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiological Reviews 2018, 98, 1805-1908, 10.1152/physrev.00031.2017.
  17. Sara M. Freeman; Aaron L. Smith; Mark M. Goodman; Karen Bales; Selective localization of oxytocin receptors and vasopressin 1a receptors in the human brainstem. Social Neuroscience 2016, 12, 113-123, 10.1080/17470919.2016.1156570.
  18. Yoshifumi Mizumoto; Tadashi Kimura; Richard Ivell; A genomic element within the third intron of the human oxytocin receptor gene may be involved in transcriptional suppression. Molecular and Cellular Endocrinology 1997, 135, 129-138, 10.1016/s0303-7207(97)00195-0.
  19. Daniel S. Quintana; Jaroslav Rokicki; Dennis Van Der Meer; Dag Alnæs; Tobias Kaufmann; Aldo Córdova-Palomera; Ingrid Dieset; Ole A. Andreassen; Lars T. Westlye; Oxytocin pathway gene networks in the human brain. Nature Communications 2019, 10, 1-12, 10.1038/s41467-019-08503-8.
  20. Miller, T.V.; Caldwell, H.K. Oxytocin during development: Possible organizational effects on behavior. Front. Endocrinol. 2015, 6, 76.
  21. Johnson, Z.V.; Young, L.J. Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neurosci. Biobehav. Rev. 2017, 76, 87–98.
  22. Lincoln M. Tracy; Nellie Georgiou-Karistianis; Stephen J. Gibson; Melita Giummarra; Oxytocin and the modulation of pain experience: Implications for chronic pain management. Neuroscience & Biobehavioral Reviews 2015, 55, 53-67, 10.1016/j.neubiorev.2015.04.013.
  23. Monica Leslie; Paulo Silva; Yannis Paloyelis; James Blevins; Janet Treasure; A systematic review and quantitative meta-analysis of the effects of oxytocin on feeding. Journal of Neuroendocrinology 2018, 30, e12584, 10.1111/jne.12584.
  24. Tina Napso; Hannah E.J. Yong; Jorge Lopez-Tello; Amanda N. Sferruzzi-Perri; The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Frontiers in Physiology 2018, 9, e1091, 10.3389/fphys.2018.01091.
  25. Page, K.; McCool, W.F.; Guidera, M. Examination of the pharmacology of oxytocin and clinical guidelines for use in labor. J. Midwifery Womens Health 2017, 62, 425–433.
  26. Churchland, P.S.; Winkielman, P. Modulating social behavior with oxytocin: How does it work? What does it mean? Horm. Behav. 2012, 61, 392–399.
  27. Zik, J.B.; Roberts, D.L. The many faces of oxytocin: Implications for psychiatry. Psychiatry Res. 2015, 226, 31–37.
  28. Bordt, E.A.; Smith, C.J.; Demarest, T.G.; Bilbo, S.D.; Kingsbury, M.A. Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response. Neurotox. Res. 2018, 36, 239–256.
  29. Walum, H.; Young, L.J. The neural mechanisms and circuitry of the pair bond. Nat. Rev. Neurosci. 2018, 19, 643–654.
  30. Sapolsky, R.M. Doubled-Edged Swords in the Biology of Conflict. Front. Psychol. 2018, 9, 2625.
  31. Ellis, J.A.; Brown, C.M.; Barger, B.; Carlson, N.S. Influence of Maternal Obesity on Labor Induction: A Systematic Review and Meta-Analysis. J. Midwifery Womens Health 2019, 64, 55–67.
  32. Viteri, O.A.; Sibai, B.M. Challenges and Limitations of Clinical Trials on Labor Induction: A Review of the Literature. AJP Rep. 2018, 8, 4.
More
Related Content
The central nervous system (CNS) relies on precise regulation of potassium ion (K+) concentrations to maintain physiology. This regulation involves complex cellular and molecular mechanisms that work in concert to regulate both intracellular and extracellular K+ levels. Inflammation, a key physiological response, encompasses a series of cell-specific events leading to inflammasome activation. Perturbations in K+-sensitive processes can result in either chronic or uncontrolled inflammation, highlighting the intricate relationship between K+ homeostasis and inflammatory signalling. This review explores molecular targets that influence K+ homeostasis and have been implicated in inflammatory cascades, offering potential therapeutic avenues for managing inflammation. We examine both cell-specific and common molecular targets across different cell types, providing a comprehensive overview of the interplay between K+ regulation and inflammation in the CNS. By elucidating these mechanisms, we identify leads for drug discovery programmes aimed at modulating inflammatory responses. Additionally, we highlight potential consequences of targeting individual molecular entities for therapeutic purposes, emphasizing the need for a nuanced approach in developing anti-inflammatory strategies. This review considers current knowledge on K+-sensitive inflammatory processes within the CNS, offering critical insights into the molecular underpinnings of inflammation and potential therapeutic interventions. Our findings underscore the importance of considering K+ homeostasis in the development of targeted therapies for inflammatory conditions within the CNS.
Keywords: potassium; homeostasis; inflammation; neurons; glia; neurodegeneration
This entry reviews the health condition known as Roemheld syndrome, or gastrocardiac syndrome in modern medicine. A pathology of gastrointestinal origin, the syndrome relies on a gut–brain–heart triad, interconnected by the vagus nerve. Pressure from the intestines pushes the stomach into the diaphragm and activates the vagus nerve, which affects the heart rate and gives the perception of cardiac issues. This distressing sensation, which usually comes after meals or with other digestive problems, causes anxiety or panic. Although events not arising from anatomic abnormalities are relatively harmless, hypersensitivity to these uncomfortable sensations may precipitate psychiatric problems (anxiety or depression) that cause repeated gastrocardiac events through sympathetic activation and the disruption of peristalsis. Treatment is usually symptomatic and may include diet, lifestyle changes, probiotics, or prescriptions that increase gut motility, but this specific set of reproducible symptoms may also be caused by hiatal hernia or side effects from medication/surgery and treated with respect to those mechanical causes. This review highlights details from the most current knowledge of the condition and offers suggestions for clinical management based on the literature.
Keywords: Roemheld; gastrocardiac; IBS; SIBO; vagus
Learn the connection between sleep apnea and hypersomnia, and how they impact sleep and health.
Keywords: consult a sleep apnea expert; hypersomnia as the opposite of insomnia
The use of antiepileptic drugs during pregnancy has always been a controversial topic. Researchers from the University of Bristol discussed the long-term safety evidence of other antiepileptic drugs during pregnancy. The results show that children exposed to valproate during pregnancy are more likely to have autism, intellectual disability, and attention deficit hyperactivity disorder (ADHD)than children who have not been exposed to antiepileptic drugs during pregnancy. Furthermore, children who were exposed to topiramate during pregnancy were 2.5 times more susceptible to being diagnosed with intellectual disability. In addition, those exposed to carbamazepine had a 1.25 times higher chance of being diagnosed with autism and a 1.30 times greater likelihood of facing an intellectual disability diagnosis. However, there was minimal indication that lamotrigine exposure during pregnancy significantly increased the risk of neurodevelopmental diagnoses in children.
Keywords: antiseizure medication; valproate; pregnancy; autism; intellectual disability; ADHD; neurodevelopmental diagnoses
Social life is a key feature in humans; without it, language, science, and technology would not have appeared. The inclination to engage with others is also a main source of pleasure and pain and as such a key factor for quality of life. In this paper, I shall present current knowledge on the evolutionary trajectory leading to the four main types of relations: parent–child, pair-bonding, kinship, and social life (bonding between non-kin for purposes other than breeding). These relationships are not unique to humans; they have evolved independently multiple times across the animal kingdom. In our lineage, the origins of parent–child bonding may be traced back to the early amniotes some 320 Mya (million years ago). Pair-bonding and social life most likely evolved recently. Understanding how these affiliations are rooted in the brain, particularly the role of feelings, provides valuable insights that can help us improve society.
Keywords: society; evolution; happiness; affiliations; friendship; cooperation; brain; rewards
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , ,
View Times: 714
Revisions: 6 times (View History)
Update Date: 28 Sep 2021
Video Production Service