Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 4070 word(s) 4070 2021-01-28 09:53:31 |
2 format change Meta information modification 4070 2021-02-01 07:54:30 | |
3 format change Meta information modification 4070 2021-02-01 07:55:27 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Vetrano, I.G. Psychiatric Disorders. Encyclopedia. Available online: https://encyclopedia.pub/entry/6905 (accessed on 09 January 2025).
Vetrano IG. Psychiatric Disorders. Encyclopedia. Available at: https://encyclopedia.pub/entry/6905. Accessed January 09, 2025.
Vetrano, Ignazio Gaspare. "Psychiatric Disorders" Encyclopedia, https://encyclopedia.pub/entry/6905 (accessed January 09, 2025).
Vetrano, I.G. (2021, January 30). Psychiatric Disorders. In Encyclopedia. https://encyclopedia.pub/entry/6905
Vetrano, Ignazio Gaspare. "Psychiatric Disorders." Encyclopedia. Web. 30 January, 2021.
Psychiatric Disorders
Edit

Psychiatric disorders refer to the behavior or psychological pattern that can lead to significant distress or functional impairment.

addiction deep-brain stimulation major depressive disorder Obsessive-Compulsive Disorder OCD

1. Introduction

Psychosurgery was developed from the need to manage patients affected by untreatable mental pathologies. The history of neurosurgical treatment for psychiatric disorders started in 1935, when Antonio Moniz, a Portuguese neurologist, proposed the prefrontal leucotomy to section the white matter connections between the prefrontal cortex and the thalamus. For such research, he received the Nobel Prize in 1949[1]. Then, Freeman and Watts modified the Moniz’s procedure, developing a faster surgical technique called “trans-orbital leucotomy”[2]. Since then, the number of procedures performed to treat psychiatric disorders has rapidly grown, reaching its apex in the 50s[3]. Nonetheless, the primary surgical treatment of psychiatric diseases was represented by “disconnection” procedures to separate white matter tracts from the prefrontal lobes. However, the need for reducing the serious adverse effects, cognitive alterations, and personality changes associated with such treatments led to a progressive reduction of such procedures. Finally, the advent of pharmacotherapy appeared to determine an irreversible stop to psychosurgery. However, over the last years, a better understanding of overall cerebral functions, along with the enormous technological advances in neurosurgery, has led to reconsidering the role of neurosurgical procedures in treating some psychiatric disorders, in a multidisciplinary approach that makes these procedures more effective, suitable, and more consistent in terms of results.

Functional surgery based on deep-brain stimulation (DBS) was first tried, in patients with psychiatric disorders, more than sixty years ago[4]. As it happened for movement disorders, DBS has almost totally replaced ablative neurosurgical procedures in psychiatric neurosurgery. More recently, the adjunct of radiotherapy procedures as cyber-knife or gamma-knife (GK), and the introduction of Magnetic Resonance–guided Focus Ultrasound procedures (MRgFUS), opened new therapeutic fields for selected psychiatric patients who are unresponsive to psychotherapy and pharmacotherapy. 

Table 1. Overview of the techniques currently used.

Technique Step 1 Step 2 Step 3 Treatment
GK Positioning of a stereotactic frame to the patient’s head (for the target’s coordinates) Acquisition of stereotactic MRI images for localizing the target; setup of the target’s coordinates The patient and the sterotactic frame are fixed into a hemispherical helmet connected to the Main unit of the GK apparatus The radiation sources are up to 201 γ radiation-emittingCobalt units connected to 4 or 8 mm collimators; the target is drawn on MRI images, and the total radiation dosage and radiation duration are decided for appropriate target lesioning (usually, single 4-mm isocenter with a maximum dose of 140–160 Gy
RF Positioning of a stereotactic frame to the patient’s head (for the target’s coordinates) Acquisition of stereotactic MRI images for localizing the target; setup of the target’s coordinates The patient is led to the operating room; target’s coordinates are brought into the sterile stereotactic apparatus Two burr holes are made 3 cm in front of the coronal suture and 2.5 cm lateral to the midline; the thermoelectrode is inserted to the target and a thermic lesion is made
DBS Positioning of a stereotactic frame to the patient’s head (for the target’s coordinates) Acquisition of stereotactic MRI images for localizing the target; setup of the target’s coordinates The patient is led to the operating room; target’s coordinates are brought into the sterile stereotactic apparatus Two burr holes are made 3 cm in front of the coronal suture and 2.5 cm lateral to the midline; the stimulating electrode is brought to the target structure and then fixed to the skull and connected to a subcutaneous internal pulse generator
MRgFUS Positioning of a stereotactic frame to the patient’s head (for the target’s coordinates) Acquisition of stereotactic MRI images for localizing the target; setup of the target’s coordinates The patient and the frame are fixed to the MRI FUS suite, which contains up to 1096 Ultrasound beams’ sources The target is drawn on stereotactic MRI images; multiple and gradual sessions of US administration are performed, to reach lesional temperatures (at least 53 °C) with a variable amount of energy requirement (20.000–40.000 J)

References

  1. Faria, M.A.J. Violence, mental illness, and the brain—A brief history of psychosurgery: Part 1—From trephination to lobotomy. Surg. Neurol. Int. 2013, 4, 49, doi:10.4103/2152-7806.110146.
  2. Freeman, W.; Watts, J.W. Prefrontal Lobotomy: The Surgical Relief of Mental Pain. Bull. N. Y. Acad. Med. 1942, 18, 794–812.
  3. Lévêque, M. Psychosurgery; Springer International Publishing: Cham, Switzerland, 2014; ISBN 9783319011431.
  4. Heath, R.G.; Monroe, R.R.; Mickle, W.A. Stimulation of the amygdaloid nucleus in a schizophrenic patient. Am. J. Psychiatry 1955, 111, 862–863, doi:10.1176/ajp.111.11.862.
  5. Drevets, W.C. Orbitofrontal cortex function and structure in depression. Ann N Y Acad Sci. 2007, 1121, 499-527. doi: 10.1196/annals.1401.029.
  6. Price, J.L.; Drevets, W.C. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn. Sci. 2012, 16, 61–71, doi:10.1016/j.tics.2011.12.011.
  7. Rush, A.J. Limitations in efficacy of antidepressant monotherapy. J. Clin. Psychiatry 2007, 68, 8–10.
  8. Fava, M.; Davidson, K.G. Definition and epidemiology of treatment-resistant depression. Psychiatr. Clin. N. Am. 1996, 19, 179–200, doi:10.1016/S0193-953X(05)70283-5.
  9. Talairach, J. [Destruction of the anterior ventral thalamic nucleus in the treatment of mental diseases]. Rev. Neurol. (Paris) 1952, 87, 352–357.
  10. David, M.; Sauguet, J.; Hecaen, H.; Talairach, J. [Follow-up of 78 cases of psychosurgery a year after the operation]. Rev. Neurol. (Paris) 1953, 89, 3–21.
  11. Greenberg, B.D.; Price, L.H.; Rauch, S.L.; Friehs, G.; Noren, G.; Malone, D.; Carpenter, L.L.; Rezai, A.R.; Rasmussen, S.A. Neurosurgery for intractable obsessive-compulsive disorder and depression: Critical issues. Neurosurg. Clin. N. Am. 2003, 14, 199–212, doi:10.1016/S1042-3680(03)00005-6.
  12. Christmas, D.M.B.; Sam Eljamel, M.; Butler, S.; Hazari, H.; MacVicar, R.; Steele, J.D.; Livingstone, A.; Matthews, K. Long term outcome of thermal anterior capsulotomy for chronic, treatment refractory depression. J. Neurol. Neurosurg. Psychiatry 2011, 82, 594–600, doi:10.1136/jnnp.2010.217901.
  13. Knight, G. Stereotactic Tractotomy in the Surgical Treatment of Mental Illness. J. Neurol. Neurosurg. Psychiatry 1965, 28, 304–310, doi:10.1136/jnnp.28.4.304.
  14. Hodgkiss, A.D.; Malizia, A.L.; Bartlett, J.R.; Bridges, P.K. Outcome after the psychosurgical operaeion of stereotactic subcaudate tractotomy, 1979-1991. J. Neuropsychiatry Clin. Neurosci. 1995, 7, 230–234, doi:10.1176/jnp.7.2.230.
  15. Vogt, B.A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 2005, 6, 533–544.
  16. Ballantine, H.T.; Cassidy, W.L.; Flanagan, N.B.; Marino, R. Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J. Neurosurg. 1967, 26, 488–495, doi:10.3171/jns.1967.26.5.0488.
  17. Spangler, W.J.; Cosgrove, G.R.; Ballantine, H.T.; Cassem, E.H.; Rauch, S.L.; Nierenberg, A.; Price, B.H. Magnetic resonance image-guided stereotactic cingulotomy for intractable psychiatric disease. Neurosurgery 1996, 38, 1071–1078, doi:10.1097/00006123-199606000-00001.
  18. Shields, D.C.; Asaad, W.; Eskandar, E.N.; Jain, F.A.; Cosgrove, G.R.; Flaherty, A.W.; Cassem, E.H.; Price, B.H.; Rauch, S.L.; Dougherty, D.D. Prospective Assessment of Stereotactic Ablative Surgery for Intractable Major Depression. Biol. Psychiatry 2008, 64, 449–454, doi:10.1016/j.biopsych.2008.04.009.
  19. Kelly, D.; Richardson, A.; Mitchell-Heggs, N.; Greenup, J.; Chen, C.; Hafner, R.J. Stereotactic limbic leucotomy: A preliminary report on forty patients. Br. J. Psychiatry 1973, 123, 141–148, doi:10.1192/bjp.123.2.141.
  20. Kelly, D.; Richardson, A.; Mitchell Heggs, N. Stereotactic limbic leucotomy: Neurophysiological aspects and operative technique. Br. J. Psychiatry 1973, 123, 133–140, doi:10.1192/bjp.123.2.133.
  21. Cho, D.Y.; Lee, W.Y.; Chen, C.C. Limbic leukotomy for intractable major affective disorders: A 7-year follow-up study using nine comprehensive psychiatric test evaluations. J. Clin. Neurosci. 2008, 15, 138–142, doi:10.1016/j.jocn.2006.10.017.
  22. Montoya, A.; Weiss, A.P.; Price, B.H.; Cassem, E.H.; Dougherty, D.D.; Nierenberg, A.A.; Rauch, S.L.; Cosgrove, G.R.; Meyerson, B.; Rezai, A.R.; et al. Magnetic resonance imaging-guided stereotactic limbic leukotomy for treatment of intractable psychiatric disease. Neurosurgery 2002, 50, 1043–1052, doi:10.1097/00006123-200205000-00018.
  23. Krishna, V.; Sammartino, F.; Rezai, A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology advances in diagnosis and treatment. JAMA Neurol. 2018, 75, 246–254, doi:10.1001/jamaneurol.2017.3129.
  24. Kim, M.; Kim, C.H.; Jung, H.H.; Kim, S.J.; Chang, J.W. Treatment of Major Depressive Disorder via Magnetic Resonance–Guided Focused Ultrasound Surgery. Biol. Psychiatry 2018, 83, e17–e18, doi:10.1016/j.biopsych.2017.05.008.
  25. Lévêque, M.; Carron, R.; Régis, J. Radiosurgery for the treatment of psychiatric disorders: A review. World Neurosurg. 2013, 80, S32.e1-S32.e9, doi:10.1016/j.wneu.2013.07.004.
  26. Park, S.-C.; Lee, J.K.; Kim, C.-H.; Hong, J.P.; Lee, D.H. Gamma-knife subcaudate tractotomy for treatment-resistant depression and target characteristics: A case report and review. Acta Neurochir. (Wien) 2017, 159, 113–120, doi:10.1007/s00701-016-3001-3.
  27. Benabid, A.L.; Benazzouz, A.; Hoffmann, D.; Limousin, P.; Krack, P.; Pollak, P. Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord. 1998, 13, 119-125. doi: 10.1002/mds.870131321.
  28. Talbot, P.S.; Cooper, S.J. Anterior cingulate and subgenual prefrontal blood flow changes following tryptophan depletion in healthy males. Neuropsychopharmacology 2006, 31, 1757–1767, doi:10.1038/sj.npp.1301022.
  29. Mayberg, H.S.; Liotti, M.; Brannan, S.K.; McGinnis, S.; Mahurin, R.K.; Jerabek, P.A.; Silva, J.A.; Tekell, J.L.; Martin, C.C.; Lancaster, J.L.; et al. Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. Depress. Sci. Ment. Heal. 2013, 6, 245–253, doi:10.1176/ajp.156.5.675.
  30. Hamani, C.; Mayberg, H.; Stone, S.; Laxton, A.; Haber, S.; Lozano, A.M. The subcallosal cingulate gyrus in the context of major depression. Biol. Psychiatry 2011, 69, 301–308, doi:10.1016/j.biopsych.2010.09.034.
  31. Mayberg, H.S.; Lozano, A.M.; Voon, V.; McNeely, H.E.; Seminowicz, D.; Hamani, C.; Schwalb, J.M.; Kennedy, S.H. Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45, 651–660, doi:10.1016/j.neuron.2005.02.014.
  32. Lozano, A.M.; Mayberg, H.S.; Giacobbe, P.; Hamani, C.; Craddock, R.C.; Kennedy, S.H. Subcallosal Cingulate Gyrus Deep Brain Stimulation for Treatment-Resistant Depression. Biol. Psychiatry 2008, 64, 461–467, doi:10.1016/j.biopsych.2008.05.034.
  33. Drobisz, D.; Damborská, A. Deep brain stimulation targets for treating depression. Behav. Brain Res. 2019, 359, 266–273, doi:10.1016/j.bbr.2018.11.004.
  34. Naesström, M.; Blomstedt, P.; Bodlund, O. A systematic review of psychiatric indications for deep brain stimulation, with focus on major depressive and obsessive-compulsive disorder. Nord. J. Psychiatry 2016, 70, 483–491, doi:10.3109/08039488.2016.1162846.
  35. Dandekar, M.P.; Fenoy, A.J.; Carvalho, A.F.; Soares, J.C.; Quevedo, J. Deep brain stimulation for treatment-resistant depression: An integrative review of preclinical and clinical findings and translational implications. Mol. Psychiatry 2018, 23, 1094–1112, doi:10.1038/mp.2018.2.
  36. Riva-Posse, P.; Choi, K.S.; Holtzheimer, P.E.; Crowell, A.L.; Garlow, S.J.; Rajendra, J.K.; McIntyre, C.C.; Gross, R.E.; Mayberg, H.S. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: Prospective targeting in treatment-resistant depression. Mol. Psychiatry 2018, 23, 843–849, doi:10.1038/mp.2017.59.
  37. Schlaepfer, T.E.; Cohen, M.X.; Frick, C.; Kosel, M.; Brodesser, D.; Axmacher, N.; Joe, A.Y.; Kreft, M.; Lenartz, D.; Sturm, V. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 2008, 33, 368–377, doi:10.1038/sj.npp.1301408.
  38. Bewernick, B.H.; Hurlemann, R.; Matusch, A.; Kayser, S.; Grubert, C.; Hadrysiewicz, B.; Axmacher, N.; Lemke, M.; Cooper-Mahkorn, D.; Cohen, M.X.; et al. Nucleus Accumbens Deep Brain Stimulation Decreases Ratings of Depression and Anxiety in Treatment-Resistant Depression. Biol. Psychiatry 2010, 67, 110–116, doi:10.1016/j.biopsych.2009.09.013.
  39. Bewernick, B.H.; Kayser, S.; Sturm, V.; Schlaepfer, T.E. Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: Evidence for sustained efficacy. Neuropsychopharmacology 2012, 37, 1975–1985, doi:10.1038/npp.2012.44.
  40. Aouizerate, B.; Cuny, E.; Martin-Guehl, C.; Guehl, D.; Amieva, H.; Benazzouz, A.; Fabrigoule, C.; Allard, M.; Rougier, A.; Bioulac, B.; et al. Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression: Case report. J. Neurosurg. 2004, 101, 682–686, doi:10.3171/jns.2004.101.4.0682.
  41. Malone, D.A.; Dougherty, D.D.; Rezai, A.R.; Carpenter, L.L.; Friehs, G.M.; Eskandar, E.N.; Rauch, S.L.; Rasmussen, S.A.; Machado, A.G.; Kubu, C.S.; et al. Deep Brain Stimulation of the Ventral Capsule/Ventral Striatum for Treatment-Resistant Depression. Biol. Psychiatry 2009, 65, 267–275, doi:10.1016/j.biopsych.2008.08.029.
  42. Dougherty, D.D.; Rezai, A.R.; Carpenter, L.L.; Howland, R.H.; Bhati, M.T.; O’Reardon, J.P.; Eskandar, E.N.; Baltuch, G.H.; Machado, A.D.; Kondziolka, D.; et al. A Randomized Sham-Controlled Trial of Deep Brain Stimulation of the Ventral Capsule/Ventral Striatum for Chronic Treatment-Resistant Depression. Biol. Psychiatry 2015, 78, 240–248, doi:10.1016/j.biopsych.2014.11.023.
  43. Coenen, V.A.; Panksepp, J.; Hurwitz, T.A.; Urbach, H.; Mädler, B. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): Imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J. Neuropsychiatry Clin. Neurosci. 2012, 24, 223–236, doi:10.1176/appi.neuropsych.11080180.
  44. Dandekar, M.P.; Luse, D.; Hoffmann, C.; Cotton, P.; Peery, T.; Ruiz, C.; Hussey, C.; Giridharan, V.V.; Soares, J.C.; Quevedo, J.; et al. Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle. J. Affect. Disord. 2017, 217, 80–88, doi:10.1016/j.jad.2017.03.074.
  45. Schlaepfer, T.E.; Bewernick, B.H.; Kayser, S.; Mädler, B.; Coenen, V.A. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol. Psychiatry 2013, 73, 1204-1212, doi: 10.1016/j.biopsych.2013.01.034.
  46. Fenoy, A.J.; Schulz, P.; Selvaraj, S.; Burrows, C.; Spiker, D.; Cao, B.; Zunta-Soares, G.; Gajwani, P.; Quevedo, J.; Soares, J. Deep brain stimulation of the medial forebrain bundle: Distinctive responses in resistant depression. J. Affect. Disord. 2016, 203, 143–151, doi:10.1016/j.jad.2016.05.064.
  47. Bewernick, B.H.; Kayser, S.; Gippert, S.M.; Switala, C.; Coenen, V.A.; Schlaepfer, T.E. Deep brain stimulation to the medial forebrain bundle for depression- long-term outcomes and a novel data analysis strategy. Brain Stimul. 2017, 10, 664–671, doi:10.1016/j.brs.2017.01.581.
  48. Li, B.; Piriz, J.; Mirrione, M.; Chung, C.; Proulx, C.D.; Schulz, D.; Henn, F.; Malinow, R. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 2011, 470, 535–541, doi:10.1038/nature09742.
  49. Winter, C.; Vollmayr, B.; Djodari-Irani, A.; Klein, J.; Sartorius, A. Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression. Behav. Brain Res. 2011, 216, 463–465, doi:10.1016/j.bbr.2010.07.034.
  50. Sartorius, A.; Kiening, K.L.; Kirsch, P.; von Gall, C.C.; Haberkorn, U.; Unterberg, A.W.; Henn, F.A.; Meyer-Lindenberg, A. Remission of Major Depression Under Deep Brain Stimulation of the Lateral Habenula in a Therapy-Refractory Patient. Biol. Psychiatry 2010, 67, doi:10.1016/j.biopsych.2009.08.027.
  51. Rolls, E.T. The functions of the orbitofrontal cortex. Brain Cogn. 2004, 55, 11–29, doi:10.1016/S0278-2626(03)00277-X.
  52. Jiménez, F.; Velasco, F.; Salin-Pascual, R.; Hernández, J.A.; Velasco, M.; Criales, J.L.; Nicolini, H. A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery 2005, 57, 585–592, doi:10.1227/01.NEU.0000170434.44335.19.
  53. Abramowitz, J.S.; Franklin, M.E.; Schwartz, S.A.; Furr, J.M. Symptom presentation and outcome of cognitive-behavioral therapy for obsessive-compulsive disorder. J. Consult. Clin. Psychol. 2003, 71, 1049–1057, doi:10.1037/0022-006X.71.6.1049.
  54. Denys, D. Pharmacotherapy of obsessive-compulsive disorder and obsessive-compulsive spectrum disorders. Psychiatr. Clin. N. Am. 2006, 29, 553–84, xi, doi:10.1016/j.psc.2006.02.013.
  55. Nuttin, B.; Cosyns, P.; Demeulemeester, H.; Gybels, J.; Meyerson, B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 1999, 354, 1526, doi:10.1016/S0140-6736(99)02376-4.
  56. Jiménez, F.; Velasco, F.; Salín-Pascual, R.; Velasco, M.; Nicolini, H.; Velasco, A.L.; Castro, G. Neuromodulation of the inferior thalamic peduncle for major depression and obsessive compulsive disorder. Acta Neurochir. Suppl. 2007, 97, 393–398, doi:10.1007/978-3-211-33081-4_44.
  57. Huff, W.; Lenartz, D.; Schormann, M.; Lee, S.-H.; Kuhn, J.; Koulousakis, A.; Mai, J.; Daumann, J.; Maarouf, M.; Klosterkötter, J.; et al. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: Outcomes after one year. Clin. Neurol. Neurosurg. 2010, 112, 137–143, doi:10.1016/j.clineuro.2009.11.006.
  58. Franzini, A.; Messina, G.; Gambini, O.; Muffatti, R.; Scarone, S.; Cordella, R.; Broggi, G. Deep-brain stimulation of the nucleus accumbens in obsessive compulsive disorder: Clinical, surgical and electrophysiological considerations in two consecutive patients. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2010, 31, 353–359, doi:10.1007/s10072-009-0214-8.
  59. Islam, L.; Franzini, A.; Messina, G.; Scarone, S.; Gambini, O. Deep brain stimulation of the nucleus accumbens and bed nucleus of stria terminalis for obsessive-compulsive disorder: A case series. World Neurosurg. 2015, 83, 657–663, doi:10.1016/j.wneu.2014.12.024.
  60. Anderson, D.; Ahmed, A. Treatment of patients with intractable obsessive-compulsive disorder with anterior capsular stimulation. Case report. J. Neurosurg. 2003, 98, 1104–1108, doi:10.3171/jns.2003.98.5.1104.
  61. Sturm, V.; Lenartz, D.; Koulousakis, A.; Treuer, H.; Herholz, K.; Klein, J.C.; Klosterkötter, J. The nucleus accumbens: A target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J. Chem. Neuroanat. 2003, 26, 293–299, doi:10.1016/j.jchemneu.2003.09.003.
  62. Piras, F.; Piras, F.; Chiapponi, C.; Girardi, P.; Caltagirone, C.; Spalletta, G. Widespread structural brain changes in OCD: A systematic review of voxel-based morphometry studies. Cortex. 2015, 62, 89–108, doi:10.1016/j.cortex.2013.01.016.
  63. Kong, X.-Z.; Boedhoe, P.S.W.; Abe, Y.; Alonso, P.; Ameis, S.H.; Arnold, P.D.; Assogna, F.; Baker, J.T.; Batistuzzo, M.C.; Benedetti, F.; et al. Mapping Cortical and Subcortical Asymmetry in Obsessive-Compulsive Disorder: Findings From the ENIGMA Consortium. Biol. Psychiatry 2020, 87, 1022–1034, doi:10.1016/j.biopsych.2019.04.022.
  64. Boedhoe, P.S.W.; van Rooij, D.; Hoogman, M.; Twisk, J.W.R.; Schmaal, L.; Abe, Y.; Alonso, P.; Ameis, S.H.; Anikin, A.; Anticevic, A.; et al. Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups. Am. J. Psychiatry 2020, 177, 834–843, doi:10.1176/appi.ajp.2020.19030331.
  65. Boedhoe, P.S.W.; Schmaal, L.; Abe, Y.; Alonso, P.; Ameis, S.H.; Anticevic, A.; Arnold, P.D.; Batistuzzo, M.C.; Benedetti, F.; Beucke, J.C.; et al. Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group. Am. J. Psychiatry 2018, 175, 453–462, doi:10.1176/appi.ajp.2017.17050485.
  66. Li, N.; Baldermann, J.C.; Kibleur, A.; Treu, S.; Akram, H.; Elias, G.J.B.; Boutet, A.; Lozano, A.M.; Al-Fatly, B.; Strange, B.; et al. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat. Commun. 2020, 11, 3364, doi:10.1038/s41467-020-16734-3.
  67. López-Pina, J.A.; Sánchez-Meca, J.; López-López, J.A.; Marín-Martínez, F.; Núñez-Núñez, R.M.; Rosa-Alcázar, A.I.; Gómez-Conesa, A.; Ferrer-Requena, J. The Yale–Brown Obsessive Compulsive Scale: A Reliability Generalization Meta-Analysis. Assessment 2014, 22, 619–628, doi:10.1177/1073191114551954.
  68. Senova, S.; Clair, A.-H.; Palfi, S.; Yelnik, J.; Domenech, P.; Mallet, L. Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder: Towards an Individualized Approach. Front. Psychiatry 2019, 10, 905, doi:10.3389/fpsyt.2019.00905.
  69. Alonso, P.; Cuadras, D.; Gabriëls, L.; Denys, D.; Goodman, W.; Greenberg, B.D.; Jimenez-Ponce, F.; Kuhn, J.; Lenartz, D.; Mallet, L.; et al. Deep Brain Stimulation for Obsessive-Compulsive Disorder: A Meta-Analysis of Treatment Outcome and Predictors of Response. PLoS ONE 2015, 10, e0133591, doi:10.1371/journal.pone.0133591.
  70. Dong, H.-W.; Swanson, L.W. Organization of axonal projections from the anterolateral area of the bed nuclei of the stria terminalis. J. Comp. Neurol. 2004, 468, 277–298, doi:10.1002/cne.10949.
  71. Flavin, S.A.; Winder, D.G. Noradrenergic control of the bed nucleus of the stria terminalis in stress and reward. Neuropharmacology 2013, 70, 324–330, doi:10.1016/j.neuropharm.2013.02.013.
  72. Mallet, L.; Polosan, M.; Jaafari, N.; Baup, N.; Welter, M.-L.; Fontaine, D.; du Montcel, S.T.; Yelnik, J.; Chéreau, I.; Arbus, C.; et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N. Engl. J. Med. 2008, 359, 2121–2134, doi:10.1056/NEJMoa0708514.
  73. Abelson, J.L.; Curtis, G.C.; Sagher, O.; Albucher, R.C.; Harrigan, M.; Taylor, S.F.; Martis, B.; Giordani, B. Deep brain stimulation for refractory obsessive-compulsive disorder. Biol. Psychiatry 2005, 57, 510–516, doi:10.1016/j.biopsych.2004.11.042.
  74. Greenberg, B.D.; Gabriels, L.A.; Malone, D.A.J.; Rezai, A.R.; Friehs, G.M.; Okun, M.S.; Shapira, N.A.; Foote, K.D.; Cosyns, P.R.; Kubu, C.S.; et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol. Psychiatry 2010, 15, 64–79, doi:10.1038/mp.2008.55.
  75. Pepper, J.; Zrinzo, L.; Hariz, M. Anterior capsulotomy for obsessive-compulsive disorder: A review of old and new literature. J. Neurosurg. JNS 2019, 1–10, doi:10.3171/2019.4.JNS19275.
  76. Chabardes, S.; Krack, P.; Piallat, B.; Bougerol, T.; Seigneuret, E.; Yelnik, J.; Fernandez Vidal, S.; David, O.; Mallet, L.; Benabid, A.-L.; et al. Deep brain stimulation of the subthalamic nucleus in obsessive-compulsives disorders: Long-term follow-up of an open, prospective, observational cohort. J. Neurol. Neurosurg. Psychiatry 2020, doi:10.1136/jnnp-2020-323421.
  77. Rück, C.; Karlsson, A.; Steele, J.D.; Edman, G.; Meyerson, B.A.; Ericson, K.; Nyman, H.; Asberg, M.; Svanborg, P. Capsulotomy for obsessive-compulsive disorder: Long-term follow-up of 25 patients. Arch. Gen. Psychiatry 2008, 65, 914–921, doi:10.1001/archpsyc.65.8.914.
  78. Rasmussen, S.A.; Noren, G.; Greenberg, B.D.; Marsland, R.; McLaughlin, N.C.; Malloy, P.J.; Salloway, S.P.; Strong, D.R.; Eisen, J.L.; Jenike, M.A.; et al. Gamma Ventral Capsulotomy in Intractable Obsessive-Compulsive Disorder. Biol. Psychiatry 2018, 84, 355–364, doi:10.1016/j.biopsych.2017.11.034.
  79. Kim, S.J.; Roh, D.; Jung, H.H.; Chang, W.S.; Kim, C.-H.; Chang, J.W. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder: 2-year follow-up. J. Psychiatry Neurosci. 2018, 43, 327–337, doi:10.1503/jpn.170188.
  80. Davidson, B.; Hamani, C.; Huang, Y.; Jones, R.M.; Meng, Y.; Giacobbe, P.; Lipsman, N. Magnetic Resonance-Guided Focused Ultrasound Capsulotomy for Treatment-Resistant Psychiatric Disorders. Oper. Neurosurg. (Hagerstown) 2020, doi:10.1093/ons/opaa240.
  81. Davidson, B.; Hamani, C.; Rabin, J.S.; Goubran, M.; Meng, Y.; Huang, Y.; Baskaran, A.; Sharma, S.; Ozzoude, M.; Richter, M.A.; et al. Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: Clinical and imaging results from two phase I trials. Mol. Psychiatry 2020, 25, 1946–1957. doi:10.1038/s41380-020-0737-1.
More
Information
Subjects: Clinical Neurology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 875
Revisions: 3 times (View History)
Update Date: 01 Feb 2021
1000/1000
Video Production Service