You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Development of All-Solid-State Li-Ion Batteries
Innovation in the design of Li-ion rechargeable batteries is necessary to overcome safety concerns and meet energy demands. In this regard, a new generation of Li-ion batteries (LIBs) in the form of all-solid-state batteries (ASSBs) has been developed, attracting a great deal of attention for their high-energy density and excellent mechanical-electrochemical stability.
  • 1.6K
  • 17 May 2023
Topic Review
Adsorbing Materials for Fluoride Removal
In recent years, there has been an increase in public perception of the detrimental side-effects of fluoride to human health due to its effects on teeth and bones. Today, there is a plethora of techniques available for the removal of fluoride from drinking water. Among them, adsorption is a very prospective method because of its handy operation, cost efficiency, and high selectivity. 
  • 1.6K
  • 12 Jul 2021
Topic Review
Alkyl Levulinates
Alkyl levulinates (AlkLevs) are biobased chemicals that occupy a strategic role in biomass valorization as potential substitutes of several oil-based compounds (fuels, solvents, chemical intermediates).
  • 1.6K
  • 08 Oct 2021
Topic Review
Applications of Bioplastics and Reinforced Bioplastics
The introduction of bioplastics has been an evolution for plastic industry since conventional plastics have been claimed to cause several environmental issues. Apart from its biodegradability, one of the advantages can be identified of using bioplastic is that they are produced by renewal resources as the raw materials for synthesis. Nevertheless, bioplastics can be classified into two types, which are biodegradable and non-biodegradable, depending on the type of plastic that is produced. Although some of the bioplastics are non-biodegradable, the usage of biomass in synthesising the bioplastics helps in preserving non-renewable resources, which are petrochemical, in producing conventional plastics. However, the mechanical strength of bioplastic still has room for improvement as compared to conventional plastics, which is believed to limit its application. Ideally, bioplastics need to be reinforced for improving their performance and properties to serve their application. Synthetic reinforcement has been used to reinforce conventional plastic to achieve its desire properties to serve its application, such as glass fiber.
  • 1.5K
  • 05 Jun 2023
Topic Review
Synthesis and Vibrational Properties of Conducting Polymers Composites
From composites based on carbon nanotubes (CNTs) and conducting polymers (CPs) to their biggest competitor, namely composites based on graphene or graphene derivate (GD) and CPs, there are many methods of synthesis that influence the morphology and the functionalization inside the composite, making them valuable candidates for EM both inside DSSCs and in supercapacitors devices. From the combination of CPs with carbon-based materials, such as CNT and graphene or GD, the perfect network is created, and so the charge transfer takes place faster and more easily.
  • 1.5K
  • 26 Jan 2024
Topic Review
Self-Healing Energetic Composite Materials
Energetic composite materials (ECMs) are the basic materials of polymer binder explosives and composite solid propellants, which are mainly composed of explosive crystals and binders. During the manufacturing, storage and use of ECMs, the bonding surface is prone to micro/fine cracks or defects caused by external stimuli such as temperature, humidity and impact, affecting the safety and service of ECMs. Therefore, substantial efforts have been devoted to designing suitable self-healing binders aimed at repairing cracks/defects.
  • 1.5K
  • 19 Jan 2023
Topic Review
Hybrid Nanostructured Materials as Energy Storage Devices
Hybrid nanostructured materials composed of transition metal oxides/hydroxides, metal chalcogenides, metal carbides, metal–organic frameworks, carbonaceous compounds and polymer-based porous materials have been used as electrodes for designing energy storage systems such as batteries, supercapacitors (SCs), and so on.  Available energy storage devices can be classified into various types; for example, based on storage duration, there are three types: short-, mid-, and long-term. Depending on their reaction time, they are considered to be either rapid or slow. According to their storage capacity, they can be classified as small-, medium-, or large-scale. There are many techniques for the storage of various types of energies, including electrical, mechanical, chemical, and thermal. Moreover, based on the precise needs and applications, storage technologies have different technical and economic criteria.
  • 1.5K
  • 15 May 2023
Topic Review
Additive Manufacturing of Ti-Based Alloys
TiAl-based intermetallic alloys have come to the fore as the preferred alloys for high-temperature applications. Conventional methods (casting, forging, sheet forming, extrusion, etc.) have been applied to produce TiAl intermetallic alloys. However, the inherent limitations of conventional methods do not permit the production of the TiAl alloys with intricate geometries. Additive manufacturing technologies such as electron beam melting (EBM) and laser powder bed fusion (LPBF), have been used to produce TiAl alloys with complex geometries. EBM technology can produce crack-free TiAl components but lacks geometrical accuracy. LPBF technology has great geometrical precision that could be used to produce TiAl alloys with tailored complex geometries, but cannot produce crack-free TiAl components. To satisfy the current industrial requirement of producingcrack-free TiAl alloys with tailored geometries, the paper proposes a new heating model for the LPBF manufacturing process. The model could maintain even temperature between the solidified and subsequent layers, reducing temperature gradients (residual stress), which could eliminate crack formation. The new conceptualized model also opens a window for in-situ heat treatment of the built samples to obtain the desired TiAl (gama-phase) and Ti3Al (α2-phase) intermetallic phases for high-temperature operations. In situ heat treatment would also improve the homogeneity of the microstructure of LPBF manufactured samples.
  • 1.5K
  • 26 Aug 2021
Topic Review
Affecting Erosion Factors
Erosion is a major issue since it results in several problems, such as failure/collapse, the degradation of surfaces, severe accidents, and vulnerabilities in many industrial systems and processes. Surface degradation by erosion is a slow but nevertheless continuous and unpreventable process in numerous industries, such as the oil and gas industry; erosion also affects aircraft, steam engines, and the rotor blades of power plant drive turbines, including wet-steam turbines, as well as other turbine plants that operate on wet steam.
  • 1.5K
  • 05 Jul 2022
Topic Review
TiAl–Si Alloys
The experimental generation of TiAl–Si alloys is composed of titanium aluminide (TiAl, Ti3Al or TiAl3) matrix reinforced by hard and heat-resistant titanium silicides (especially Ti5Si3). The alloys are characterized by wear resistance comparable with tool steels, high hardness, and very good resistance to oxidation at high temperatures (up to 1000 °C), but also low room-temperature ductility, as is typical also for other intermetallic materials.
  • 1.4K
  • 01 Apr 2021
Topic Review
“Brick-and-Mortar” Composites Made of 2D Carbon Nanoparticles
Among all biomimetic materials, nacre has drawn great attention from the scientific community, thanks to superior levels of strength and toughness and its brick-and-mortar (B&M) architecture. However, achieving the desired performances is challenging since the mechanical response of the material is influenced by many factors, such as the filler content, the matrix molecular mobility and the compatibility between the two phases. Most importantly, the properties of a macroscopic bulk material strongly depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases. Consequently, poor mechanical performances of the material are associated with interface issues and low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at the chemical level enhances the mechanical response of the material. 
  • 1.4K
  • 27 Apr 2022
Topic Review
Liquid Crystal Waveguide Structures
Liquid crystal materials can be used to make either a core, in which light beams can be confined, or a cladding of optical waveguides.
  • 1.4K
  • 02 Nov 2021
Topic Review
Self-Healing Elastomers
It is impossible to describe the recent progress of our society without considering the role of polymers; however, for a broad audience, “polymer” is usually related to environmental pollution. The poor disposal and management of polymeric waste has led to an important environmental crisis, and, within polymers, plastics have attracted bad press despite being easily reprocessable. Nonetheless, there is a group of polymeric materials that is particularly more complex to reprocess, rubbers. These macromolecules are formed by irreversible crosslinked networks that give them their characteristic elastic behavior, but at the same time avoid their reprocessing. Conferring them a self-healing capacity stands out as a decisive approach for overcoming this limitation. By this mean, rubbers would be able to repair or restore their damage automatically, autonomously, or by applying an external stimulus, increasing their lifetime, and making them compatible with the circular economy model.
  • 1.4K
  • 26 May 2022
Topic Review
MXene–Metal Composites
MXene, an advanced family of 2D ceramic material resembling graphene, has had a considerable impact on the field of research because of its unique physiochemical properties. MXene has been synthesized by the selective etching of MAX via different techniques. However, with the passage of time, due to the need for further progress and improvement in MXene materials, ideas have turned toward composite fabrication, which has aided boosting the MXene composites regarding their properties and applications in various areas.
  • 1.4K
  • 27 Apr 2022
Topic Review
Composite Formation for Dielectric Properties of Polymers
Polymer blend or composite, which is a combination of two or more polymers and fillers such as semiconductors, metals, metal oxides, salts and ceramics, are a synthesized product facilitating improved, augmented or customized properties, and have widespread applications for the achievement of functional materials. Polymer materials with embedded inorganic fillers are significantly appealing for challenging and outstanding electric, dielectric, optical and mechanical applications involving magnetic features. In particular, a polymer matrix exhibiting large values of dielectric constant (ε′) with suitable thermal stability and low dielectric constant values of polymer blend, having lesser thermal stability, together offer significant advantages in electronic packaging and other such applications in different fields.
  • 1.4K
  • 01 Mar 2023
Topic Review
Ion-Imprinted Polymeric Materials
The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification. 
  • 1.4K
  • 30 Mar 2023
Topic Review
Processing Methods of Titanium Matrix Composites
Discontinuously Reinforced Particulate Titanium Matrix Composites (DRPTMCs) have been the most popular and challenging in consideration with development and heat treatment due to their significant weight-saving capacity, high specific strength, stiffness and oxidising nature compared with other metals and alloys. Owing to their excellent capabilities, DRPTMCs are widely used in aerospace, automobiles, biomedical and other industries. However, regardless of the reinforcements, such as continuous fibres or discontinuous particulates, the unique properties of DRPTMCs have dealt with these composites for widespread research and progress around the domain. 
  • 1.4K
  • 28 Dec 2022
Topic Review
Plastic Waste into Supports for Nanostructured Heterogeneous Catalysts
Plastics are ubiquitous in our society and are used in many industries, such as packaging, electronics, the automotive industry, and medical and health sectors, and plastic waste is among the types of waste of higher environmental concern. The increase in the amount of plastic waste produced daily has increased environmental problems, such as pollution by micro-plastics, contamination of the food chain, biodiversity degradation and economic losses. The selective and efficient conversion of plastic waste for applications in environmental remediation, such as by obtaining composites, is a strategy of the scientific community for the recovery of plastic waste. The development of polymeric supports for efficient, sustainable, and low-cost heterogeneous catalysts for the treatment of organic/inorganic contaminants is highly desirable yet still a great challenge; this will be the main focus of this work. Common commercial polymers, like polystyrene, polypropylene, polyethylene therephthalate, polyethylene and polyvinyl chloride, are addressed herein, as are their main physicochemical properties, such as molecular mass, degree of crystallinity and others. Additionally, we discuss the environmental and health risks of plastic debris and the main recycling technologies as well as their issues and environmental impact. The use of nanomaterials raises concerns about toxicity and reinforces the need to apply supports; this means that the recycling of plastics in this way may tackle two issues. Finally, we dissert about the advances in turning plastic waste into support for nanocatalysts for environmental remediation, mainly metal and metal oxide nanoparticles.
  • 1.4K
  • 18 Jan 2022
Topic Review
Parameters Affecting Zeolite T Crystallization
Zeolites are well-known porous crystal systems that exist in various sizes (nano-, micro-, etc.) and have been widely incorporated in different applications. They consist of a uniform size of pore distributions which are also known as voids. Voids and cavities within the zeolite system are the factors that contribute to the unique properties of the zeolite. These voids and cavities are controlled by the type of crystals that grow and intergrowth within the zeolite membrane. Nanoporous zeolite T is identified to have within it an intergrowth framework that makes zeolite type T an exceptional species in the zeolite family.
  • 1.4K
  • 18 Jun 2021
Topic Review
Cementitious and Geopolymer Composites with Lithium Slag Incorporation
Lithium slag (LS)’s particle size distribution is comparable to fly ash (FA) and ground granulated blast furnace slag (GGBS), which suggests it can enhance densification and nucleation in concrete. The mechanical treatment of LS promotes early hydration by increasing the solubility of aluminum, lithium, and silicon. LS’s compositional similarity to FA endows it with low-calcium, high-reactivity properties that are suitable for cementitious and geopolymeric applications. Increasing the LS content reduces setting times and flowability while initially enhancing mechanical properties, albeit with diminishing returns beyond a 30% threshold. LS significantly improves chloride ion resistance and impacts drying shrinkage variably. 
  • 1.3K
  • 08 Jan 2024
  • Page
  • of
  • 11
Academic Video Service