Topic Review
Erythritol
The sugar alcohol erythritol is a relatively new food ingredient. It is naturally occurring in plants, however, produced commercially by fermentation. It is also produced endogenously via the pentose phosphate pathway (PPP). Consumers perceive erythritol as less healthy than sweeteners extracted from plants, including sucrose. 
  • 1.2K
  • 09 Jan 2023
Topic Review
Rapid Nontranscriptional Effects of Calcifediol and Calcitriol
Classically, a secosteroid hormone, vitamin D, has been implicated in calcium and phosphate homeostasis and has been associated with the pathogenesis of rickets and osteomalacia in patients with severe nutritional vitamin D deficiency. The spectrum of known vitamin D-mediated effects has been expanded in recent years. However, the mechanisms of how exactly this hormone elicits its biological function are still not fully understood. The interaction of this metabolite with the vitamin D receptor (VDR) and, subsequently, with the vitamin D-responsive element in the region of specific target genes leading to the transcription of genes whose protein products are involved in the traditional function of calcitriol (known as genomic actions). Moreover, in addition to these transcription-dependent mechanisms, it has been recognized that the biologically active form of vitamin D3, as well as its immediate precursor metabolite, calcifediol, initiate rapid, non-genomic actions through the membrane receptors that are bound as described for other steroid hormones. So far, among the best candidates responsible for mediating rapid membrane response to vitamin D metabolites are membrane-associated VDR (VDRm) and protein disulfide isomerase family A member 3 (Pdia3). 
  • 1.2K
  • 29 Jun 2022
Topic Review
SIRT1-NF-κB Axis
Inflammation is an adaptive response triggered by harmful conditions or stimuli, such as an infection or tissue damage pursuing homeostasis reestablishment. Liver diseases cause approximately 2 million deaths per year worldwide and hepatic inflammation is a common factor to all of them, being the main driver of hepatic tissue damage and causing progression from NAFLD (non-alcoholic fatty liver disease) to NASH (non-alcoholic steatohepatitis), cirrhosis and, ultimately, HCC (hepatocellular carcinoma). The metabolic sensor SIRT1, a class III histone deacetylase with strong expression in metabolic tissues such as liver, and transcription factor NF-κB, a master regulator of inflammatory response, show an antagonistic relationship in controlling inflammation. For this reason, SIRT1 targeting is emerging as a potential strategy to improve different metabolic and/or inflammatory pathologies. In this review, we explore diverse upstream regulators and some natural/synthetic activators of SIRT1 as possible therapeutic treatment for liver diseases.
  • 1.2K
  • 27 Oct 2020
Topic Review
AMP-activated Protein Kinase
We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. If this is the case, then aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between a wide variety of conditions associated with metabolic disorder.
  • 1.1K
  • 10 May 2021
Topic Review
Pancreatic β-Cell Dysfunction
Under healthy conditions, pancreatic β-cells produce and secrete the insulin hormone in response to blood glucose levels. Under diabetic conditions, however, β-cells are compelled to continuously secrete larger amounts of insulin to reduce blood glucose levels, and thereby, the β-cell function is debilitated in the long run.
  • 1.1K
  • 30 Dec 2020
Topic Review
Sphingolipids and DNA Damage Response
Sphingolipids are essential structural components of biological membranes that mediate a wide array of physiological functions such as inflammation, cell proliferation, survival, senescence, and death. An emerging body of evidence suggests that bioactive sphingolipids modulate the DNA damage response (DDR) induced by genotoxic stress and therein determine cell fate.
  • 1.1K
  • 16 Jul 2020
Topic Review
Clinical nutrition management of sarcopenia/T2DM utilizing amino acids
Sarcopenia develops over time as a result of aging, and typically leads to muscle loss, a concurrent increase in fat mass, and a variety of health issues leading to an overall poor quality of life. There is some evidence that sarcopenia may be a contributing to the development of type 2 diabetes mellitus (T2DM) in the elderly, and therefore nutritional management is key in the prevention of both sarcopenia and T2DM. The primary focus of nutritional management lays in the amount and quality of protein intake, which has led to the development of clinical nutritional therapies involving amino acids to improve muscle protein synthesis and decrease sarcopenia symptoms. In the work herein, we present and evaluate data derived from human trials regarding the utilization of hydroxyl-methyl butyrate (HMB), L-leucine (Leu), L-glutamine (Gln) and L-arginine (Arg) supplementation for optimal management of sarcopenia in geriatric patients, a topic of significant clinical nutrition interest which may have important implications in T2DM management.
  • 1.1K
  • 29 Oct 2020
Topic Review
Adipocytokines Produced by Adipose Tissue
The alterations of adipocyte-derived signal mediators strongly influence the regulation of inflammation, resulting in chronic low-grade inflammation.
  • 1.1K
  • 23 Jun 2021
Topic Review
Iron Deficiency in Celiac Disease
Iron deficiency anemia (IDA) is the most recognized type of anemia in patients with celiac disease (CD) and may be present in over half of patients at the time of diagnosis. Folate and vitamin B12 malabsorption, nutritional deficiencies, inflammation, blood loss, development of refractory CD, and concomitant Heliobacter pylori infection are other causes of anemia in such patients. The decision to replenish iron stores and the route of administration (oral or intravenous) are controversial due, in part, to questions surrounding the optimal formulation and route of administration.
  • 1.1K
  • 09 Oct 2021
Topic Review
Testosterone and DHEA and Immune Response
Androgens are steroids that modulate various processes in the body, ranging from reproduction, metabolism, and even immune response. The main androgens are testosterone, dihydrotestosterone (DHT) and dehydroepiandrosterone (DHEA). These steroids modulate the development and function of immune response cells. Androgens are generally attributed to immunosuppressive effects; however, this is not always the case. Variations in the concentrations of these hormones induce differences in the innate, humoral, and cell-mediated immune response, which is concentration dependent. The androgens at the highest concentration in the organism that bind to the androgen receptor (AR) are DHEA and testosterone. 
  • 1.1K
  • 15 Dec 2022
Topic Review
Inappropriate Secretion of Thyroid-Stimulating Hormone
The term “inappropriate secretion of thyroid-stimulating hormone; IST” was proposed by Gershengorn and Weintraub in 1975. In a subsequent report, IST was described as a condition characterized by elevated serum levels of immunoreactive thyroid-stimulating hormone (TSH) in the presence of elevated free thyroid hormone concentrations. Similarly, the term "syndrome of IST (SITSH)" is widely used in Japan to refer to a closely related condition; however, unlike that for IST, an elevated serum free triiodothyronine concentration is not a requisite criterion for SITSH diagnosis. IST or SITSH is an important indicator of resistance to thyroid hormone β (RTHβ) caused by germline mutations in genes encoding thyroid hormone receptor β (TRβ) and TSH-secreting pituitary adenoma.
  • 1.1K
  • 12 Aug 2021
Topic Review
Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress
Stress response is considered the physiological and behavioral response to internal or external stimulus. Corticotropin-releasing factor (CRF) in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis.
  • 1.1K
  • 27 Nov 2021
Topic Review
Molecules from Mexican Hypoglycemic Plants
Like in many developing countries, in Mexico, the use of medicinal plants is a common practice. Based on our own field experience, there are at least 800 plants used for treating diabetes nowadays. Thus, their investigation is essential. The molecules isolated from Mexican hypoglycemic plants, including their source and target tested, are worth studying. In the last few years, some researchers have focused on the study of Mexican hypoglycemic plants. Herewith we provide a review of the 86 active compounds belonging to different classes of natural products, that have been isolated from Mexican Hypoglycemic plants.
  • 1.1K
  • 27 Oct 2020
Topic Review
LIN28-let-7-ARID3B Pathway
Placental disorders are a major cause of pregnancy loss in humans, and 40%–60% of embryos are lost between fertilization and birth. Successful embryo implantation and placental development requires rapid proliferation, invasion, and migration of trophoblast cells. In recent years, microRNAs (miRNAs) have emerged as key regulators of molecular pathways involved in trophoblast function. A miRNA binds its target mRNA in the 3ʹ-untranslated region (3ʹ-UTR), causing its degradation or translational repression. Lethal-7 (let-7) miRNAs induce cell differentiation and reduce cell proliferation by targeting proliferation-associated genes. The oncoprotein LIN28 represses the biogenesis of mature let-7 miRNAs. Proliferating cells have high LIN28 and low let-7 miRNAs, whereas differentiating cells have low LIN28 and high let-7 miRNAs. In placenta, low LIN28 and high let-7 miRNAs can lead to reduced proliferation of trophoblast cells, resulting in abnormal placental development. In trophoblast cells, let-7 miRNAs reduce the expression of proliferation factors either directly by binding their mRNA in 3ʹ-UTR or indirectly by targeting the -rich interaction domain (ARID)3B complex, a transcription-activating complex comprised of ARID3A, ARID3B, and histone demethylase 4C (KDM4C). In this review, we discuss regulation of trophoblast function by miRNAs, focusing on the role of LIN28-let-7-ARID3B pathway in placental development.
  • 1.0K
  • 27 Oct 2020
Topic Review
Exosomes and Diabetes
Diabetes is part of a group of metabolic disorders characterized by long-term high blood glucose levels due to either inadequate production of insulin (type 1) or poor response of the recipient cell to insulin (type 2). Organ dysfunctions are the main causes of morbidity and mortality due to high glucose levels. Exosomes are part of a newly emerged research area and have attracted a great deal of attention for their capacity to regulate communications between cells. In conditions of diabetes, exosomes play important roles in the pathological processes in both T1DM and T2DM, such as connecting the immune cell response to pancreatic tissue injury, as well as adipocyte stimulation to insulin resistance of skeletal muscle or liver. Furthermore, in recent years, nucleic acids containing exosomes—especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs)—have been shown to mainly regulate communications between organs in pathological processes of diabetes, including influencing metabolic signals and insulin signals in target tissues, affecting cell viability, and modulating inflammatory pancreatic cells. Moreover, exosome miRNAs show promise in their use as biomarkers or in treatments for diabetes and diabetic complications.  
  • 1.0K
  • 25 Mar 2022
Topic Review
High-Density Lipoproteins as Homeostatic Nanoparticles
It is well known that blood lipoproteins (LPs) are multimolecular complexes of lipids and proteins that play a crucial role in lipid transport. High-density lipoproteins (HDL) are a class of blood plasma LPs that mediate reverse cholesterol transport (RCT)—cholesterol transport from the peripheral tissues to the liver. Due to this ability to promote cholesterol uptake from cell membranes, HDL possess antiatherogenic properties. This function was first observed at the end of the 1970s to the beginning of the 1980s, resulting in high interest in this class of LPs. It was shown that HDL are the prevalent class of LPs in several types of living organisms (from fishes to monkeys) with high resistance to atherosclerosis and cardiovascular disorders. Lately, understanding of the mechanisms of the antiatherogenic properties of HDL has significantly expanded. Besides the contribution to RCT, HDL have been shown to modulate inflammatory processes, blood clotting, and vasomotor responses. These particles also possess antioxidant properties and contribute to immune reactions and intercellular signaling.
  • 1.0K
  • 30 Nov 2020
Topic Review
Insulin-Like Growth Factor-1
This article details the critical roles that insulin-like growth factor-1 and its receptor insulin-like growth factor-1 receptor (GFR1) play in maintaining bone homeostasis and how exposure of bone cells to microgravity affects the function of these growth factors. 
  • 1.0K
  • 14 Jul 2020
Topic Review
Angiotensin II
Cardiovascular disease is the leading cause of morbidity and mortality in the western and developing world, and the incidence of cardiovascular disease is increasing with the longer lifespan afforded by our modern lifestyle.  Vascular diseases including coronary heart disease, high blood pressure, and stroke comprise the majority of cardiovascular disease and therefore represent a significant medical and socioeconomic burden on our society.  It is not be surprising that these conditions overlap and potentiate each other when we consider the many cellular and molecular similarities between them. At the molecular level, the vascular smooth muscle cell (VSMC) is the target, integrator, and effector cell of both atherogenic and the major effector protein of the hypertensive signal, Angiotensin II (Ang II).  Together, these signals can potentiate each other and prime the artery and exacerbate hypertension and atherosclerosis. Therefore, VSMC are the fulcrum in progression of these diseases and therefore, understanding the effects of atherogenic stimuli and Ang II on VSMC is  key to understanding and treating  atherosclerosis and hypertension.  In this review, we will examine studies in which hypertension and atherosclerosis intersect on the VSMC, and illustrate common pathways between these two diseases and vascular aging.
  • 1.0K
  • 07 Jul 2020
Topic Review
Steroidogenesis, Oxidative Stress and Male Hypogonadism
Steroid sex hormones are classified as androgens, estrogens, and progestogens. Although all three classes are important in male and female physiology, androgens are associated with "musculisation" effects and are considered primarily male sex hormones. Androgens have diverse functions in muscle physiology, lean body mass, the regulation of adipose tissue, bone density, neurocognitive regulation, and spermatogenesis, male reproductive and sexual function.
  • 1.0K
  • 29 Mar 2022
Topic Review
Circadian Clock
Most living organisms in both the plant and animal kingdoms have evolved processes to stay in tune with the alternation of day and night, and to optimize their physiology as a function of light supply. In mammals, a circadian clock relying on feedback loops between key transcription factors will thus control the temporally regulated pattern of expression of most genes. Modern ways of life have highly altered the synchronization of human activities with their circadian clocks. The circadian clock orchestrates most physiological events in living organisms and its deregulation in association with modern ways of life correlates with the rise of multiple pathologies in humans. 
  • 1.0K
  • 23 Aug 2022
  • Page
  • of
  • 17
ScholarVision Creations