You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Intervertebral Disc Tissue Engineering with Additive Manufacturing
Intervertebral disc (IVD) degeneration is one of the major causes of lower back pain, a common health condition that greatly affects the quality of life. With an increasing elderly population and changes in lifestyle, there exists a high demand for novel treatment strategies for damaged IVDs. Researchers have investigated IVD tissue engineering (TE) as a way to restore biological and mechanical functions by regenerating or replacing damaged discs using scaffolds with suitable cells. These scaffolds can be constructed using material extrusion additive manufacturing (AM), a technique used to build three-dimensional (3D), custom discs utilising computer-aided design (CAD). Structural geometry can be controlled via the manipulation of printing parameters, material selection, temperature, and various other processing parameters
  • 844
  • 12 Jan 2023
Topic Review
Trabecular Tantalum
Tantalum has known ever wider applications for the production of endosseous implantable devices in the orthopedic and dental fields. Its excellent performances are due to its capacity to stimulate new bone formation, thus improving implant integration and stable fixation. Tantalum’s mechanical features can be mainly adjusted by controlling its porosity thanks to a number of versatile fabrication techniques, which allow obtaining an elastic modulus similar to that of bone tissue, thus limiting the stress-shielding effect.
  • 840
  • 27 Feb 2023
Topic Review
The Electrohydrodynamic Method for Nanomaterial Production
Electrospinning is a versatile technique used to produce fibrous mats. The high surface area of the electrospun mats makes them suitable for applications in fields using nanoparticles. Electrospun mats are used for tissue engineering, wound dressing, water-treatment filters, biosensors, nanocomposites, medical implants, protective clothing materials, cosmetics, and drug delivery systems. 
  • 838
  • 28 Jan 2023
Topic Review
Hybrid Polylactide Blends
Conformation of polylactide macromolecules can be adjusted by interactions with some specific additives (arylamides, hydrazides, 1,3:2,4-dibenzylidene-d-sorbitol, orotic acid, humic acids, fulvic acids, nanocellulose, and cyclodextrins) due to the formation of hydrogen bonds or host-guest complexes. This “soft templating” may enhance nucleation of polymer crystals and influence the properties of polylactide blends.
  • 835
  • 11 Aug 2020
Topic Review
Plant-Based Flocculants as Substituters for Sludge Dewatering
Due to its high water content, sewage sludge dewatering is not just a simple operation; rather, it is a challenging task and a costly management process. Its final handling is usually preceded by several dewatering steps, and among them is the conditioning process known as the flocculation stage, which is carried out using synthetic chemical reagents. Despite the abilities of these additives to reduce sludge volume and extract its bound waters, they are suspected to cause serious environmental and health threats. Their substitution by natural and efficient additives originating from plant extracts could thus be a safe and an eco-friendly alternative, overcoming ecosystem damages.
  • 833
  • 08 Aug 2023
Topic Review
Moss-Based Biocomposites
Mosses have a large surface area of densely packed leaves that allows them to effectively trap air pollutants. This enables them to exhibit filtration efficiencies comparable to those of man-made filters. However, within the context of a circular economy, moss fibers integrated into a biocomposite matrix provide the added advantage of being reusable, facilitating the development of closed systems without waste generation.
  • 833
  • 12 Dec 2023
Topic Review
Economic Friendly ZnO-Based UV Sensors
Ultraviolet (UV) sensors offer significant advantages in human health protection and environmental pollution monitoring. Amongst various materials for UV sensors, the zinc oxide (ZnO) nanostructure is considered as one of the most promising candidates due to its incredible electrical, optical, biomedical, energetic and preparing properties. Compared to other fabricating techniques, hydrothermal synthesis has been proven to show special advantages such as economic cost, low-temperature process and excellent and high-yield production.
  • 831
  • 13 Aug 2021
Topic Review
Nucleic Acid Drugs Delivery Carriers
Nucleic acid drugs are not readily permeable through cell membranes and often exhibit poor blood serum stability, rapid renal clearance and poor endosomal escape/cytoplasmic escape. Therefore, they are commonly used in combination with drug delivery system (DDS) carriers. The drug carrier plays an important role in the process of drug delivery. 
  • 831
  • 04 Aug 2021
Topic Review
Poly(lactic acid)-Based Blends
Aliphatic and aromatic polyesters of hydroxycarboxylic acids are characterized not only by biodegradability, but also by biocompatibility and inertness, which makes them suitable for use in different applications. Polyesters with high enzymatic hydrolysis capacity include poly(lactic acid), poly(ε-caprolactone), poly(butylene succinate) and poly(butylene adipate-co-terephthalate), poly(butylene succinate-co-adipate). At the same time, poly(lactic acid) is the most durable, widespread, and cheap polyester from this series. However, it has a number of drawbacks, such as high brittleness, narrow temperature-viscosity processing range, and limited biodegradability. Three main approaches are known for poly(lactic acid) modification: incorporation of dispersed particles or low molecular weight and oligomeric substances, copolymerization with other polymers, and blending with other polymers. 
  • 830
  • 06 May 2023
Topic Review
Rhenium in Biological Imaging
Rhenium (Re) is widely used in the diagnosis and treatment of cancer due to its unique physical and chemical properties. Re has more valence electrons in its outer shell, allowing it to exist in a variety of oxidation states and to form different geometric configurations with many different ligands. The luminescence properties, lipophilicity, and cytotoxicity of complexes can be adjusted by changing the ligand of Re.
  • 827
  • 30 Mar 2023
Topic Review
Mussel-Inspired Zero-Dimensional Nanomaterials-Loaded Hydrogels
Hydrogels, with 3D hydrophilic polymer networks and excellent biocompatibilities, have emerged as promising biomaterial candidates to mimic the structure and properties of biological tissues. Nanomaterials can be classified into three main types based on their dimensionality (size and morphology): zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D). The 0D nanomaterials are solid, porous, and hollow structures, such as mesoporous silica nanoparticles (NPs), metal-organic frameworks, hydroxyapatite NPs, iron oxide magnetic NPs, silver NPs, and conductive polymer-based NPs.
  • 820
  • 14 Apr 2023
Topic Review
Osteoinductivity/Antigenicity of Allogeneic Dentin Graft
: Studies on allogeneic demineralized dentin matrix (Allo-DDM) implantation in the 1960s and 1970s provided the most reliable preclinical evidence of bone formation and antigenicity in an extraosseous site. Recently, applications of Allo-DDM at skeletal sites were studied, and have provided reliable evidence of bone-forming capacity and negligible antigenicity. However, the osteoinductivity and antigenicity properties of Allo-DDM in extraskeletal sites have not yet been investigated due to the lack of follow-up studies after the initial research. This review aims to provide a foundation on the preclinical studies of Allo-DDM from 1960 to 2019, which could enable future researches on its osteogenic capability and antigenicity. In conclusion, Allo-DDM showed great potential for osteoinductivity in extraskeletal sites with low antigenicity, which neither adversely affected osteogenic capability nor provoked immunologic reactions. 
  • 819
  • 26 May 2021
Topic Review
Hydroxyapatite Doped with Photoluminescent Elements
Photoluminescence is an especially important and useful mechanism for in situ investigations in tissue engineering, surgery, tissue restoration. Labeling with the aid of organic fluorescent molecules has been popular in clinical trials for years. In recent times, many inorganic components, even nanoparticles, have been proposed to be such candidates. Nonetheless, the toxicity of such particles represents a challenge to practical application because of their composition and nano-size character. A luminescent material with high biocompatibility is a perfect candidate for implantation and clinical application. 
  • 819
  • 13 Jan 2022
Topic Review
Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures
By utilizing nanoparticles to upload and interact with several pharmaceuticals in varying methods, the primary obstacles associated with loading two or more medications or cargos with different characteristics may be addressed. Therefore, it is feasible to evaluate the benefits provided by co-delivery systems utilizing nanoparticles by investigating the properties and functions of the commonly used structures, such as multi- or simultaneous-stage controlled release, synergic effect, enhanced targetability, and internalization.
  • 819
  • 06 May 2023
Topic Review
Plasma Technology in Food Packaging
Biopolymers have intrinsic drawbacks compared to traditional plastics, such as hydrophilicity, poor thermo-mechanical behaviours, and barrier characteristics. Therefore, biopolymers or their film modifications offer a chance to create packaging materials with specified properties. Cold atmospheric plasma (CAP) or Low temperature plasma (LTP) has a wide range of applications and has been used in the food industry as a potent tool for non-thermal food processing. Though its original purpose was to boost polymer surface energy for better adherence and printability, it has since become an effective technique for surface decontamination of food items and food packaging materials.
  • 818
  • 23 Jan 2024
Topic Review
Calcium Phosphate-Based Nanomaterials in Bone Tissue Engineering
Calcium phosphate is the main inorganic component of bone. Calcium phosphate-based biomaterials have demonstrated great potential in bone tissue engineering due to their superior biocompatibility, pH-responsive degradability, excellent osteoinductivity, and similar components to bone. Calcium phosphate nanomaterials have gained more and more attention for their enhanced bioactivity and better integration with host tissues. Additionally, they can also be easily functionalized with metal ions, bioactive molecules/proteins, as well as therapeutic drugs; thus, calcium phosphate-based biomaterials have been widely used in many other fields, such as drug delivery, cancer therapy, and as nanoprobes in bioimaging.
  • 815
  • 29 Jun 2023
Topic Review
Biomimetic Zirconia
Bio-inspired or biomimetic design of biomaterials presents new possibilities for developing implantable devices with enhanced biocompatibility and novel functions.
  • 813
  • 13 Aug 2021
Topic Review
Polymer-Based Nanofiber–Nanoparticle Hybrids
When nanoparticles and nanofibers are combined, the composite material can perform more functions, such as photothermal, magnetic response, biosensing, antibacterial, drug delivery and biosensing. To prepare nanofiber and nanoparticle hybrids (NNHs), there are two primary ways. The electrospinning technology was used to produce NNHs in a single step. An alternate way is to use a self-assembly technique to create nanoparticles in fibers. 
  • 810
  • 11 Feb 2022
Topic Review
Biomanufacturing of Cell-Derived Matrices
Cell-derived matrices (CDM) are the decellularised extracellular matrices (ECM) of tissues obtained by the laboratory culture process. CDM is developed to mimic, to a certain extent, the properties of the needed natural tissue and thus to obviate the use of animals. The composition of CDM can be tailored for intended applications by carefully optimising the cell sources, culturing conditions and decellularising methods.
  • 804
  • 15 Dec 2021
Topic Review
Hyaluronic Acid-Mediated Phenolic Compound Nanodelivery for Cancer Therapy
Phenolic compounds are bioactive phytochemicals showing a wide range of pharmacological activities, including anti-inflammatory, antioxidant, immunomodulatory, and anticancer effects. Moreover, they are associated with fewer side effects compared to most currently used antitumor drugs. Combinations of phenolic compounds with commonly used drugs have been largely studied as an approach aimed at enhancing the efficacy of anticancer drugs and reducing their deleterious systemic effects. In addition, some of these compounds are reported to reduce tumor cell drug resistance by modulating different signaling pathways. However, often, their application is limited due to their chemical instability, low water solubility, or scarce bioavailability. Nanoformulations, including polyphenols in combination or not with anticancer drugs, represent a suitable strategy to enhance their stability and bioavailability and, thus, improve their therapeutic activity. 
  • 802
  • 20 Jun 2023
  • Page
  • of
  • 32
Academic Video Service