You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Heterocyclic PPAR Ligands for Potential Therapeutic Applications
The family of nuclear peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) is a set of ligand-activated transcription factors that regulate different functions in the body. Whereas activation of PPARα is known to reduce the levels of circulating triglycerides and regulate energy homeostasis, the activation of PPARγ brings about insulin sensitization and increases the metabolism of glucose. On the other hand, PPARβ when activated increases the metabolism of fatty acids. Further, these PPARs have been claimed to be utilized in various metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity.
  • 1.2K
  • 08 Nov 2022
Topic Review
Factors Affecting Vitamin C Pharmacokinetics
The pharmacokinetics of vitamin C (vitC) is highly complex. Regulated primarily by a family of saturable sodium dependent vitC transporters (SVCTs), both the absorption and elimination phases display high dose-dependency. Also, tissue specific expression of SVCT subtypes result in a diverse distribution pattern with organ concentrations of vitC at homeostasis ranging from about 0.2 mM up to 10 mM. Unfortunately, the complex pharmacokinetics of vitC has often been overlooked in the design of human intervention studies, giving rise to misinterpretations and erroneous conclusions.
  • 1.2K
  • 23 Sep 2022
Topic Review
PKSIII
A putative Type III Polyketide synthase (PKSIII) encoding gene was identified from a marine yeast, Naganishia uzbekistanensis strain Mo29 (UBOCC-A-208024) (formerly named as Cryptococcus sp.) isolated from deep-sea hydrothermal vents. This gene is part of a distinct phylogenetic branch compared to all known terrestrial fungal sequences. This new gene encodes a C-terminus extension of 74 amino acids compared to other known PKSIII proteins like Neurospora crassa. Full-length and reduced versions of this PKSIII were successfully cloned and overexpressed in a bacterial host, Escherichia coli BL21 (DE3). Both proteins showed the same activity, suggesting that additional amino acid residues at the C-terminus are probably not required for biochemical functions. We demonstrated by LC-ESI-MS/MS that these two recombinant PKSIII proteins could only produce tri- and tetraketide pyrones and alkylresorcinols using only long fatty acid chain from C8 to C16 acyl-CoAs as starter units, in presence of malonyl-CoA. In addition, we showed that some of these molecules exhibit cytotoxic activities against several cancer cell lines.
  • 1.2K
  • 13 Jan 2021
Topic Review
Applications of Cubosomes on Cancers
Cancer is a group of disorders characterized by aberrant gene function and alterations in gene expression patterns. In 2020, it was anticipated that 19 million new cancer cases would be diagnosed globally, with around 10 million cancer deaths. Late diagnosis and interventions are the leading causes of cancer-related mortality. In addition, the absence of comprehensive cancer therapy adds to the burden. Many lyotropic non-lamellar liquid-crystalline-nanoparticle-mediated formulations have been developed in the last few decades, with promising results in drug delivery, therapeutics, and diagnostics. Cubosomes are nano-structured liquid-crystalline particles made of specific amphiphilic lipids in particular proportions. Their ability to encapsulate lipophilic, hydrophilic, and amphiphilic molecules within their structure makes them one of a kind. They are biocompatible, versatile drug carriers that can deliver medications through various routes of administration. Many preclinical studies on the use of cubosomes in cancer treatment and theranostic applications have been conducted. However, before cubosomes may be employed in clinical practice, significant technical advances must be accomplished. 
  • 1.2K
  • 24 Mar 2022
Topic Review
Marine Resources for COVID-19 Treatment
Marine resources have significant pharmacological potential in combatting various diseases, such as COVID-19. The wide variety of marine bioactive compounds and their implications are extensive. Micro and macro-organisms produce inorganic polyphosphates, sulfated polysaccharides, Bromotyrosines and many more. These compounds possess unique properties that allow them to combat Sars-Cov-2 infection, proving as efficacious potential therapeutics. Despite the challenges faced, marine organisms serve as a promising avenue for future pharmacological intervention. The present review for the first time highlights marine bioactive compounds, their sources, and their anti-viral mechanisms of action, with a focus on potential COVID-19 treatment.
  • 1.2K
  • 27 Jul 2021
Topic Review
Strategies for Improving Transdermal Administration
A transdermal delivery system is a painless method of drug administration through intact skin. Transdermal patches favor the controlled release of active ingredients through the skin into systemic circulation.Substances with analgesic effects can be administered on the skin in the form of topical patches made to produce local effects or transdermal patches that ensure the controlled and prolonged release of the active substance.
  • 1.2K
  • 18 Apr 2023
Topic Review
Pharmacokinetic Analysis of Ethanol in a Human Study
In the pharmacokinetic analysis of ethanol after oral administration, only single- or two-compartment models are used, but their precision in estimating pharmacokinetic parameters might be insufficient. Pharmacokinetic parameters obtained using pharmacokinetic models differ depending on the type of model used. The estimated pharmacokinetic parameters depend on the type of model used. The classic Widmark model in particular overestimated the fraction of absorbed ethanol from the gastrointestinal system to systemic circulation. 
  • 1.2K
  • 23 Oct 2023
Topic Review
The Genus Cetraria s. str.
The genus Cetraria s. str. (Parmeliaceae family, Cetrarioid clade) consists of 15 species of mostly erect brown or greenish yellow fruticose or subfoliose thallus. These Cetraria species have a cosmopolitan distribution, being primarily located in the Northern Hemisphere, in North America and in the Eurasia area. 
  • 1.2K
  • 24 Aug 2022
Topic Review
Innovations in Chewable Formulations and 3D Printing
Since their introduction, chewable dosage forms have gained traction due to their ability to facilitate swallowing, especially in paediatric, geriatric and dysphagia patients. Their benefits stretch beyond human use to also include veterinary applications, improving administration and palatability in different animal species. Despite their advantages, current chewable formulations do not account for individualised dosing and palatability preferences. In light of this, three-dimensional (3D) printing, and in particular the semi-solid extrusion technology, has been suggested as a novel manufacturing method for producing customised chewable dosage forms. This advanced approach offers flexibility for selecting patient-specific doses, excipients, and organoleptic properties, which are critical for ensuring efficacy, safety and adherence to the treatment. 
  • 1.2K
  • 07 Sep 2022
Topic Review
Sex Differences in Dopamine Receptors
Dopamine is an important neurotransmitter that plays a key role in neuropsychiatric illness.
  • 1.2K
  • 28 Sep 2021
Topic Review
Beta-Blockers and Cancer
Cancer is one of the leading causes of death worldwide. After diagnosis, cancer treatment may involve radiotherapy, chemotherapy, and surgery. Several of the approaches used to treat cancer also attack normal cells and, thus, there is the need for more effective treatments that decrease the toxicity to normal cells and increase the success rates of treatment. The use of beta-blockers in cancer has been studied for their antagonist action on the adrenergic system through inhibition of beta-adrenergic receptors. Besides regulating processes such as blood pressure, heart rate, and airway strength or reactivity, beta-blockers block mechanisms that trigger tumorigenesis, angiogenesis, and tumor metastasis.
  • 1.2K
  • 28 May 2021
Topic Review
Effects of Statins on Cancer via Autophagy
Cancer is one of the main causes of death globally. Most of the molecular mechanisms underlying cancer are marked by complex aberrations that activate the critical cell-signaling pathways that play a pivotal role in cell metabolism, tumor development, cytoskeletal reorganization, and metastasis. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway is one of the main signaling pathways involved in carcinogenesis and metastasis. Autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation, plays a dual role in cancer, as either a tumor promoter or a tumor suppressor, depending on the stage of the carcinogenesis. Statins are the group of drugs of choice to lower the level of low-density lipoprotein (LDL) cholesterol in the blood. Experimental and clinical data suggest the potential of statins in the treatment of cancer. In vitro and in vivo studies have demonstrated the molecular mechanisms through which statins inhibit the proliferation and metastasis of cancer cells in different types of cancer. The anticancer properties of statins have been shown to result in the suppression of tumor growth, the induction of apoptosis, and autophagy.
  • 1.2K
  • 09 Jun 2022
Topic Review
Blood–Brain Barrier
The blood–brain barrier (BBB) is a natural obstacle for drug delivery into the human brain, hindering treatment of central nervous system (CNS) disorders such as acute ischemic stroke, brain tumors, and human immunodeficiency virus (HIV)-1-associated neurocognitive disorders.
  • 1.2K
  • 27 Apr 2021
Topic Review
Propofol Sedation
Propofol is a commonly used intravenous sedative for ventilator-dependent patients. Its advantage over other sedative agents, such as benzodiazepines, is in its rapid onset and short half-life which allows for daily awakening and spontaneous breathing trials. The use of propofol is recommended by the Brain Trauma Foundation for the treatment of elevated intracranial pressure and sometimes prolonged continuous large doses are required.
  • 1.2K
  • 07 Jul 2021
Topic Review
Anticancer Nanotherapeutics in Clinical Trials
The ultimate goal of nanomedicine has always been the generation of translational technologies that can ameliorate current therapies. Cancer disease represented the primary target of nanotechnology applied to medicine, since its clinical management is characterized by very toxic therapeutics. In this effort, nanomedicine showed the potential to improve the targeting of different drugs by improving their pharmacokinetics properties and to provide the means to generate new concepts of treatments based on physical treatments and biologics.
  • 1.2K
  • 10 Nov 2022
Topic Review
Matrix Metalloproteinases
Matrix metalloproteinases (MMPs) are zinc-dependent proteases that have been extensively studied in the context of extracellular matrix (ECM) breakdown and remodelling.
  • 1.2K
  • 18 Mar 2021
Topic Review
Spatiotemporal Release of Anticancer Drugs
To overcome cancer, various chemotherapeutic studies are in progress; among these, studies on nano-formulated combinatorial drugs (NFCDs) are being actively pursued. NFCDs function via a fusion technology that includes a drug delivery system using nanoparticles as a carrier and a combinatorial drug therapy using two or more drugs. It not only includes the advantages of these two technologies, such as ensuring stability of drugs, selectively transporting drugs to cancer cells, and synergistic effects of two or more drugs, but also has the additional benefit of enabling the spatiotemporal and controlled release of drugs. This spatial and temporal drug release from NFCDs depends on the application of nanotechnology and the composition of the combination drug. 
  • 1.2K
  • 05 Apr 2021
Topic Review
Type 2 Diabetes and P450
 The most frequent form of diabetes is type 2 diabetes mellitus (T2DM) which is often part of a metabolic syndrome (hyperglycaemia, hypertension, hypercholesterolemia, abdominal obesity) that usually requires the use of several medications from different drug classes to bring each of these conditions under control. T2DM is associated with an increase in inflammatory markers such as interleukin-6 (IL-6) and the tumor necrosis factor alpha (TNF-α). Higher levels of IL-6 and TNF-α are associated with a downregulation of several drug metabolizing enzymes, especially the cytochrome P450 (P450) isoforms CYP3As and CYP2C19. A decrease in these P450 isoenzymes may lead to unexpected rise in plasma levels of substrates of these enzymes. It could also give rise to a mismatch between the genotypes determined for these enzymes, the predicted phenotypes based on these genotypes and the phenotypes observed clinically. This phenomenon is described as phenoconversion. Phenoconversion typically results from either a disease (such as T2DM) or concomitant administration of medications inducing or inhibiting (including competitive or non-competitive inhibition) a P450 isoenzyme used by other substrates for their elimination. Phenoconversion could have a significant impact on drug effects and genotypic-focused clinical outcomes.
  • 1.2K
  • 11 Oct 2021
Topic Review
ALA against COVID-19-Induced Cardiovascular Diseases
Cardiovascular complications are rapidly emerging as a major peril in COVID-19 in addition to respiratory disease. The mechanisms underlying the excessive effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities remain only partly understood. SARS-CoV-2 infection is caused by binding of the viral surface spike (S) protein to the human angiotensin-converting enzyme 2 (ACE2), followed by the activation of the S protein by transmembrane protease serine 2 (TMPRSS2). ACE2 is expressed in the lung (mainly in type II alveolar cells), heart, blood vessels, small intestine, etc., and appears to be the predominant portal to the cellular entry of the virus. Based on current information, most people infected with SARS-CoV-2 virus have a good prognosis, while a few patients reach critical condition, especially the elderly and those with chronic underlying diseases. The “cytokine storm” observed in patients with severe COVID-19 contributes to the destruction of the endothelium, leading to “acute respiratory distress syndrome” (ARDS), multiorgan failure, and death. At the origin of the general proinflammatory state may be the SARS-CoV-2-mediated redox status in endothelial cells via the upregulation of ACE/Ang II/AT1 receptors pathway or the increased mitochondrial reactive oxygen species (mtROS) production. Furthermore, this vicious circle between oxidative stress (OS) and inflammation induces endothelial dysfunction, endothelial senescence, high risk of thrombosis and coagulopathy. The microvascular dysfunction and the formation of microthrombi in a way differentiate the SARS-CoV-2 infection from the other respiratory diseases and bring it closer to cardiovascular diseases like myocardial infarction and stroke. Due the role played by OS in the evolution of viral infection and in the development of COVID-19 complications, the use of antioxidants as adjuvant therapy seems appropriate in this new pathology. Alpha-lipoic acid (ALA) could be a promising candidate that, through its wide tissue distribution and versatile antioxidant properties, interferes with several signaling pathways.
  • 1.2K
  • 12 Aug 2021
Topic Review
Antifungal Susceptibility Testing for Fungi
Invasive fungal infections (IFIs) are associated with high mortality rates and timely appropriate antifungal therapy is essential for good outcomes. Emerging antifungal resistance among Candida and Aspergillus spp., the major causes of IFI, is concerning and has led to the increasing incorporation of in vitro antifungal susceptibility testing (AST) to guide clinical decisions.
  • 1.2K
  • 10 Feb 2021
  • Page
  • of
  • 54
Academic Video Service