You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Thallium
Thallium, as a pharmaceutical cosmetic product, is applied for facial hair removal and fungal infections of the scalp. Thallium acetate is currently used as a catalyst in organic synthesis in the oxidation of olefins and hydrocarbons, and in epoxidation and polymerization reactions. Detection of Tl is a challenging task because its concentration in environmental samples may be at a nanogram per gram level or lower.
  • 3.4K
  • 23 Nov 2021
Topic Review
Lipases in the Food and Nutraceutical Industry
Lipases are efficient enzymes with promising applications in the nutraceutical and food industry, as they can offer high yields, pure products under achievable reaction conditions, and are an environmentally friendly option. 
  • 3.4K
  • 09 Sep 2022
Topic Review
Carica papaya Leaf Extract
Carica papaya (papaya) leaf extract has been used for a long time in a traditional medicine to treat fever in some infectious diseases such as dengue, malaria, and chikungunya. The development of science and technology has subsequently made it possible to provide evidence that this plant is not only beneficial as an informal medication, but also that it has scientifically proven pharmacological and toxicological activities, which have led to its formal usage in professional health care systems.
  • 3.1K
  • 08 Dec 2021
Topic Review
Enzyme Immobilization Techniques
Researchers have explored the technique of enzyme immobilization as a means to overcome limitations that free enzymes encounter, including reduced performance, high costs, and impracticality for large-scale applications. Enzymatic treatment offers a sustainable and eco-friendly alternative to conventional physicochemical treatment methods, such as adsorption, coagulation, and advanced oxidation processes. Free enzymes are biodegradable, highly efficient, and selective biological catalysts that can operate under mild conditions, thus reducing energy consumption and minimizing the generation of harmful byproducts.
  • 3.0K
  • 07 Sep 2023
Topic Review
Free Radical
Free radicals can be defined as molecular entities or molecular fragments, capable of independent existence (hence “free”). They contain one or more unpaired electrons in an outer atomic orbital or molecular orbital (hence “radical”). The negative electrical charge of electron(s) may be counterbalanced by the positive nuclear charge of positrons, resulting in a neutral particle; otherwise, having anion or cation radicals.
  • 3.0K
  • 29 Apr 2022
Topic Review
Marine-Derived Phenolic Compounds
Phenolic metabolites are organic compounds with at least one or more hydroxyl groups attached to arylic systems with simple variations to highly polymerized molecules.
  • 3.0K
  • 10 Mar 2022
Topic Review
Using CNSL for the Synthesis of Surfactants
Cashew Nut Shell Liquid (CNSL) is a promising non-edible renewable resource, directly extracted from the shell of the cashew nut. The interesting structure of CNSL and its components (cardanol, anacardic acid and cardol) lead to the synthesis of biobased surfactants. 
  • 3.0K
  • 10 Mar 2022
Topic Review
Red Seaweed Pigments
Algae taxa are notably diverse regarding pigment diversity and composition, red seaweeds (Rhodophyta) being a valuable source of phycobiliproteins (phycoerythrins, phycocyanin, and allophycocyanin), carotenes (carotenoids and xanthophylls), and chlorophyll a. These pigments have a considerable biotechnological potential, which has been translated into several registered patents and commercial applications. 
  • 3.0K
  • 20 Jan 2022
Topic Review
Molecularly Imprinted Polymers-Based Biosensors
The MIP (molecularly imprinted polymer)-based biosensor can be considered an artificial antibody-integrated polymeric active layer that readily sustains stability in challenging testing chemical environments, such as high-temperature limits up to ~300 °C. Since general proteins are usually denatured in irreversible forms higher than ~80 °C, MIP-based biosensors are more stable in storage and even suitable for applications requiring a high-temperature range.
  • 2.9K
  • 08 Mar 2022
Topic Review
Cocona Fruits from the Peruvian Amazon
Cocona fruits are a popular food and medicinal fruit used mainly in the Amazon and several countries of South America for the preparation of several food products such as drinks, jams and milk shakes. In this study five ecotypes of cocona native to Peru have been studied regarding their nutritional and antioxidants values plus antihyperlipidemic activities.
  • 2.9K
  • 29 Mar 2022
Topic Review
Torsion-Resistant Nature-Inspired Structures
The complexity of torsional load, its three-dimensional nature, its combination with other stresses, and its disruptive impact make torsional failure prevention an ambitious goal. However, even if the problem has been addressed for decades, a deep and organized treatment is still lacking in the actual research landscape. For this reason, this review aims at presenting a methodical approach to address torsional issues starting from a punctual problem definition. Accidents and breaks due to torsion, which often occur in different engineering fields such as mechanical, biomedical, and civil industry are considered and critically compared. More in depth, the limitations of common-designed torsion-resistant structures (i.e., high complexity and increased weight) are highlighted, and emerge as a crucial point for a deeper nature-driven analysis of novel solutions. In this context, an accurate screening of torsion-resistant bio-inspired unit cells is presented, taking inspiration specifically from plants, that are often subjected to the torsional effect of winds. As future insights, the actual state of technology suggests an innovative transposition to the industry: these unit cells could be prominently implied to develop novel metamaterials that could be able to address the torsional issue with a multi-scale and tailored arrangement.
  • 2.8K
  • 09 Oct 2021
Topic Review
Aggregation-Induced Emission Active Materials
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. hexaphenylsilole (HPS) is the common example of the AIE active molecule which exhibits enhancement in fluorescence in an aggregate state. The motions involved, such as restriction of intramolecular motion along with rotation and vibration mechanisms in the AIE active phenomenon, are well explained and accepted. The AIE luminogens have high photostability, large stoke shift, a photobleaching resistance property, and show high sensing reproducibility. This characteristic makes luminogens a promising candidate for sensing application
  • 2.7K
  • 19 Apr 2022
Topic Review
Starch-Based Materials
Starch is one of the most common biodegradable polymers found in nature, and it is widely utilized in the food and beverage, bioplastic industry, paper industry, textile, and biofuel industries. Starch has received significant attention due to its environmental benignity, easy fabrication, relative abundance, non-toxicity, and biodegradability. 
  • 2.6K
  • 25 Nov 2021
Biography
Greg Winter
Sir Gregory Paul Winter CBE FRS FMedSci (born 14 April 1951)[1][2] is a Nobel Prize-winning British biochemist best known for his work on the therapeutic use of monoclonal antibodies. His research career has been based almost entirely at the MRC Laboratory of Molecular Biology and the MRC Centre for Protein Engineering, in Cambridge, England. He is credited with invented techniques to both human
  • 2.6K
  • 16 Nov 2022
Topic Review
PC-12 Cell Line
PC-12 cells have been widely used as a neuronal line study model in many biosensing devices, mainly due to the neurogenic characteristics acquired after differentiation, such as high level of secreted neurotransmitter, neuron morphology characterized by neurite outgrowth, and expression of ion and neurotransmitter receptors. 
  • 2.6K
  • 18 Jul 2022
Topic Review
Fentanyl and Its New Analogs
Fentanyl is known as a synthetic narcotic analgesic, which can act as an agonist of opioid receptors, being about 100 times more potent than heroin or morphine.
  • 2.5K
  • 29 Mar 2022
Topic Review
Superhydrophobic Surface
Superhydrophobic surfaces are proposed to be ideal blood-compatible biomaterials attributed to their beneficial characteristics.
  • 2.5K
  • 13 Apr 2021
Topic Review
Sumac as a Functional Food
Utilization of Rhus coriaria L. (sumac) is upgrading not only in their culinary use and human nutrition, but also in the pharmaceutical industry, food industry and veterinary practices. This is driven by accumulating evidence that support the ethnobotanical use of this plant; in particular, advanced knowledge of the content of nutritional, medicinal and techno-functional bioactive ingredients. Most of the antioxidant potential and therapeutic roles of sumac are increasingly attributed to its constituent tannins, flavonoids, and phenolic acids. Hydroxyphenyl pyranoanthocyanins and other anthocynins are responsible for the highly desired red pigments accounting for the strong pigmentation capacity and colorant ability of sumac. Certain polyphenols and the essential oil components are responsible for the peculiar flavor and antimicrobial activity of sumac. Tannin-rich sumac extracts and isolates are known to enhance the food quality and the oxidative stability of animal products such as meat and milk. In conclusion, polyphenol-rich sumac extracts and its bioactive ingredients could be exploited towards developing novel food products which do not only address the current consumers’ interests regarding organoleptic and nutritional value of food, but also meet the growing need for ‘clean label’ as well as value addition with respect to antioxidant capacity, disease prevention, and health promotion in humans.
  • 2.5K
  • 13 Sep 2022
Topic Review
Zinc-Based Metal-Organic Frameworks
The design and structural frameworks for targeted drug delivery of medicinal compounds and improved cell imaging have been developed with several advantages. However, metal-organic frameworks (MOFs) are supplemented tremendously for medical uses with efficient efficacy. These MOFs are considered as an absolutely new class of porous materials, extensively used in drug delivery systems, cell imaging, and detecting the analytes, especially for cancer biomarkers, due to their excellent biocompatibility, easy functionalization, high storage capacity, and excellent biodegradability. While Zn-metal centers in MOFs have been found by enhanced efficient detection and improved drug delivery, these Zn-based MOFs have appeared to be safe as elucidated by different cytotoxicity assays for targeted drug delivery. On the other hand, the MOF-based heterogeneous catalyst is durable and can regenerate multiple times without losing activity. Therefore, as functional carriers for drug delivery, cell imaging, and chemosensory, MOFs’ chemical composition and flexible porous structure allowed engineering to improve their medical formulation and functionality.
  • 2.5K
  • 16 Feb 2022
Topic Review
The Rearrangement of Alkylallenes to 1,3-Dienes
1,3-Dienes are vital building blocks in organic synthesis. They underpin many fundamental synthetic transformations and are present in numerous natural products and drug candidate molecules.
  • 2.4K
  • 19 Jan 2022
  • Page
  • of
  • 11
Academic Video Service