You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Affibody- and DARPin-Conjugated Nanomaterials in Cancer Therapy
Affibodies and designed ankyrin repeat proteins (DARPins) are synthetic proteins originally derived from the Staphylococcus aureus virulence factor protein A and the human ankyrin repeat proteins, respectively. The use of these molecules in healthcare has been recently proposed as they are endowed with biochemical and biophysical features heavily demanded to target and fight diseases, as they have a strong binding affinity, solubility, small size, multiple functionalization sites, biocompatibility, and are easy to produce; furthermore, impressive chemical and thermal stability can be achieved, especially when using affibodies. In this sense, several examples reporting on affibodies and DARPins conjugated to nanomaterials have been published, demonstrating their suitability and feasibility in nanomedicine for cancer therapy.
  • 1.3K
  • 22 May 2023
Topic Review
Seaweed Diversity and Bioactive Compounds
Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development.
  • 1.3K
  • 18 Jan 2024
Topic Review
Komagataella phaffii Biotechnology
The need for a more sustainable society has prompted the development of bio-based processes to produce fuels, chemicals, and materials in substitution for fossil-based ones. In this context, microorganisms have been employed to convert renewable carbon sources into various products. The methylotrophic yeast Komagataella phaffii has been extensively used in the production of heterologous proteins. The obligate aerobic yeast Komagataella phaffii is a non-pathogenic certified and generally recognized as a safe (GRAS) microorganism. It is classified in the Saccharomycetales order and Saccharomycetaceae family. 
  • 1.3K
  • 10 Nov 2022
Topic Review
Diversity of Antimicrobial Peptides in Silkworm
Antimicrobial resistance is a phenomenon that the world is witnessing that poses a serious threat to global health. The decline in the development of novel therapeutics over the past has exacerbated the situation further. In this scenario, the pursuit of new alternative therapeutics to commonly used antibiotics has gained predominance amongst researchers across the world. Antimicrobial peptides (AMPs) from natural sources have drawn significant interest as promising pharmacological substitutes over the conventional antibiotics. The most notable advantage of AMPs is that microorganisms cannot develop resistance to them. Insects represent one of the potential sources of AMPs, which are synthesized as part of an innate immune defence against invading pathogens. AMPs from different insects have been extensively studied, and silkworm is one of them. Diverse classes of AMPs (including attacins, cecropins, defensins, enbocins, gloverins, lebocins and moricins) were identified from silkworm that exhibit antimicrobial property against bacteria, fungi and viruses, indicating their potential therapeutic benefits. 
  • 1.3K
  • 17 May 2023
Topic Review
Agro-Industrial Waste Composting Process Enhancement via Microbial Inoculation
Composting is an important technology used to treat and convert organic waste into value-added products. Recently, several studies have been done to investigate the effects of microbial supplementation on the composting of agro-industrial waste. According to these studies, microbial inoculation is considered to be one of the suitable methods for enhancing the biotransformation of organic materials during the composting process.
  • 1.3K
  • 19 Jan 2022
Topic Review
Electrochemical Biosensors on S-Layer Proteins
Integrating bioinspired materials and electrochemical techniques promote specific, rapid, sensitive, and inexpensive biosensing platforms. The selection of biomaterials to decorate a biosensor surface is a critical issue as it strongly affects selectivity and sensitivity. In this context, smart biomaterials with the intrinsic self-assemble capability like bacterial surface (S-) layer proteins are of paramount importance. Indeed, by forming a crystalline two-dimensional protein lattice on many sensors surfaces and interfaces, the S-layer lattice constitutes an immobilization matrix for small biomolecules and lipid membranes and a patterning structure with unsurpassed spatial distribution for sensing elements and bioreceptors. Thus, exploiting S-layer proteins for biosensor technology has already led to various applications ranging from detection of metal ions over small organic compounds to cells. Furthermore, enzymes immobilized on the S-layer proteins allow specific detection of several vital biomolecules. The special features of the S-layer protein lattice as part of the sensor architecture enhances surface functionalization and thus may feature an innovative class of electrochemical biosensors.
  • 1.3K
  • 29 Oct 2020
Topic Review
CRISPR/Cas-Based Gene Editing
There is a growing need for a molecular vehicle that can successfully load and deliver CRISPR/Cas ribonucleoprotein complexes (and other gene editing systems) into target tissues. Synthetic delivery vehicles are being developed but so far have been only moderately successful. Extracellular vesicles are ideal candidates for a universal biological platform to produce ready-to-use, programmable, and highly biocompatible CRISPR therapeutics. Using extracellular vesicles in the CRISPR/Cas research and, ultimately, in the clinic, demands novel, advanced techniques for protein/RNA loading, surface engineering, and manufacturing. Safety of CRISPR/Cas systems and EVs also need to be tested extensively for every particular application.
  • 1.3K
  • 03 Nov 2020
Topic Review
Dietary Interventions for Complementing Celiac Disease and Beyond
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by ingesting dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. The only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients’ quality of life and is often a socio-economic burden. Therefore, dietary and non-dietary interventions are investigated. This entry concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of “biotics” strategies, from probiotics to the less explored “viromebiotics” as possible beneficial complementary interventions for CeD management and other less understood gluten-related disorders beyond the GFD.
  • 1.3K
  • 03 Jan 2023
Topic Review
Powdery Mildew and Rust Fungi
Powdery mildew and rust fungi are major agricultural problems affecting many economically important crops and causing significant yield losses. These fungi are obligate biotrophic parasites that are completely dependent on their hosts for growth and reproduction. 
  • 1.3K
  • 19 Jun 2023
Topic Review
Parkinson's Disease Therapeutics and Gut-microbiota
Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, and for which no disease-modifying treatments exist. Neurodegeneration and neuropathology in different brain areas are manifested as both motor and non-motor symptoms in patients. Recent interest in the gut–brain axis has led to increasing research into the gut microbiota changes in PD patients and their impact on disease pathophysiology. As evidence is piling up on the effects of gut microbiota in disease development and progression, another front of action has opened up in relation to the potential usage of microbiota-based therapeutic strategies in treating gastrointestinal alterations and possibly also motor symptoms in PD. This entry provides status on the different strategies that are in the front line (i.e., antibiotics; probiotics; prebiotics; synbiotics; dietary interventions; fecal microbiota transplantation, live biotherapeutic products), and discusses the opportunities and challenges the field of microbiome research in PD is facing.
  • 1.3K
  • 12 Oct 2021
Topic Review
Challenges in Lignin Valorization
The aromatic hetero-polymer lignin is industrially processed in the paper/pulp and lignocellulose biorefinery, acting as a major energy source. It has been proven to be a natural resource for useful bioproducts; its depolymerization and conversion into high-value-added chemicals is the major challenge due to the complicated structure and heterogeneity.
  • 1.3K
  • 27 Sep 2022
Topic Review
Application of CRISPR/Cas Systems in Fungal Genetic Engineering
Fungi represent an important source of bioactive secondary metabolites (SMs), which have wide applications in many fields, including medicine, agriculture, human health, and many other industries. The genes involved in SM biosynthesis are usually clustered adjacent to each other into a region known as a biosynthetic gene cluster (BGC). The advanced CRISPR/Cas system has revolutionized fungal genetic engineering and enabled the discovery of novel bioactive compounds. 
  • 1.3K
  • 29 Mar 2023
Topic Review
Antimicrobial Action of Maltol
Maltol, 3-hydroxy-2-methyl-4-pyrone (Figure 1A), a naturally occurring compound, can be isolated from various types of plants, such as bark and leaves of Larix deciduas, Evodiopanax innovans, Cercidiphyllum japonicum, Citharexylum spinosum, Passiflora incarnata, Panax ginseng, and different kinds of pine plants [1,2,3,4]. 
  • 1.3K
  • 22 Sep 2021
Topic Review
Natural Carotenoids
Biotechnologically produced carotenoids occupy an important place in the scientific research. Owing to their role as natural pigments and their high antioxidant properties, microbial carotenoids have been proposed as alternatives to their synthetic counterparts. Natural carotenoids can be obtained either by extraction from plants or via microbial production. To this end, many studies are focusing on their efficient and sustainable production from renewable substrates. Besides the development of an efficient upstream process, their separation and purification as well as their analysis from the microbial biomass confers another important aspect to be adressed.
  • 1.3K
  • 15 May 2023
Topic Review
Genistein
Genistein is an isoflavonoid present in high quantities in soy beans. Possessing a wide range of bioactives, it is being studied extensively for its tumoricidal effects. Investigations into mechanisms of the anti-cancer activity have revealed many pathways including induction of cell proliferation, suppression of tyrosine kinases, regulation of Hedgehog-Gli1 signaling, modulation of epigenetic activities, seizing of cell cycle and Akt and MEK signaling pathways, among others via which the cancer cell proliferation can be controlled. Notwithstanding, the observed activities have been time and dose-dependent. In addition, genistein has also shown varying results in women depending on the physiological parameters, such as the early or post-menopausal states.
  • 1.3K
  • 20 Oct 2021
Topic Review
Fish Waste as Resource
Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns.
  • 1.3K
  • 28 Sep 2021
Topic Review
Applications of Peptides in Health Management and Agriculture
Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Bioactive peptides may have a positive impact on body functions and thus benefit human health. New information reporting their beneficial effects on the health of livestock and plants is also emerging. Bioactive peptides may be produced endogenously in humans, animals, and plants.
  • 1.3K
  • 12 May 2023
Topic Review
Terpene Mini-Path for Terpenoids Bio-Production
Terpenoids constitute the largest class of natural compounds and are extremely valuable from an economic point of view due to their extended physicochemical properties and biological activities. An alternative to produce terpenoids is the use of biotechnological tools involving, for example, the construction of enzymatic cascades (cell-free synthesis) or a microbial bio-production thanks to metabolic engineering techniques. 
  • 1.3K
  • 22 Dec 2021
Topic Review
Flexible Optical Biosensors
Optical biosensors based on nanostructured materials have obtained increasing interest since they allow the screening of a wide variety of biomolecules with high specificity, low limits of detection, and great sensitivity. Among them, flexible optical platforms have the advantage of adapting to non-planar surfaces, suitable for in vivo and real-time monitoring of diseases and assessment of food safety. 
  • 1.2K
  • 19 May 2021
Topic Review
S-Layer Ultrafiltration Membranes
Surface layers (S-layers) are the most common outermost cell envelope components of prokaryotic organisms (bacteria and archaea). The lattice formed by S-layer proteins are highly porous structures with identical pores in the nm-range. This feature can be utilized to fabricate ultrafiltration membranes with a very sharp specific molecular weight cut off. Moreover, S-layer lattices reveal an intrinsic antifouling characteristics, which results in a negligible clogging of the filter.
  • 1.2K
  • 28 Apr 2021
  • Page
  • of
  • 38
Academic Video Service