Topic Review
Cannabidiol as an OX1R Antagonist
The potential, multifaceted therapeutic profile of cannabidiol (CBD), a major constituent derived from the Cannabis sativa plant, covers a wide range of neurological and psychiatric disorders, ranging from anxiety to pediatric epilepsy and drug addiction. However, the molecular targets responsible for these effects have been only partially identified. In this view, the involvement of the orexin system, the key regulator in arousal and the sleep/wake cycle, and in motivation and reward processes, including drug addiction, prompted us to explore, using computational and experimental approaches, the possibility that CBD could act as a ligand of orexin receptors, orexin 1 receptor of type 1 (OX1R) and type 2 (OX2R). Ligand-binding assays showed that CBD is a selective ligand of OX1R in the low micromolar range (Ki 1.58 ± 0.2 μM) while in vitro functional assays, carried out by intracellular calcium imaging and mobilization assays, showed that CBD acts as an antagonist at this receptor. Finally, the putative binding mode of CBD has been inferred by molecular docking and molecular dynamics simulations and its selectivity toward the OX1R subtype rationalized at the molecular level. This study provides the first evidence that CBD acts as an OX1R antagonist, supporting its potential use in addictive disorders and/or body weight regulation. 
  • 721
  • 18 Aug 2021
Topic Review
Serendipita indica as a Growth Promoter
Serendipita indica has been found to be a prime beneficial microorganism that improved the growth and development of various plant species under normal and stress conditions. 
  • 721
  • 27 Dec 2022
Topic Review
NF-κB and Human Cancer
Transcription factor NF-κB has been extensively studied for its varied roles in cancer since its initial characterization as a potent retroviral oncogene several decades ago. It is now clear that NF-κB plays a major role in a large variety of human cancers, including especially ones of immune cell origin. NF-κB is generally constitutively or aberrantly activated in human cancers where it is involved.
  • 721
  • 25 Dec 2021
Topic Review
Splicing Factors in Prostate Cancer
Although inhibition of the androgen–androgen receptor (AR) axis effectively represses the growth of prostate cancer, most of all cases eventually become castration-resistant prostate cancers (CRPCs). Enhancement of the expression of AR and its variants along with the downstream signals is important for disease progression. AR-V7, a constitutive active form of AR, is generated as a result of RNA splicing. RNA splicing creates multiple transcript variants from one pre-messenger RNA (mRNA) by removing introns/exons to allow mRNA translation. The molecular mechanisms leading to marked increases of AR and generation of AR-V7 have been unclear. However, recent papers highlighted the roles of RNA splicing factors which promote AR expression and production of variants. Notably, a broad range of splicing components were aberrantly regulated in CRPC tissues. Interestingly, expression of various spliceosome genes is enhanced by RNA-binding protein splicing factor proline- and glutamine-rich (PSF/SFPQ), leading to changes in the expression of AR transcript variants. Moreover, inhibition of several splicing factors repressed tumor growth in vivo. Altered expression of splicing factors is correlated to biochemical recurrence in prostate cancer patients. 
  • 720
  • 18 Sep 2021
Topic Review
Aromachology Related to Foods
Smell is the second-most used sense in marketing strategies in the food industry. Sensory marketing appeals to the senses with the aim of creating sensory experiences and converting them into specific emotions associated with a specific product. There is a strong relationship between sensory marketing, aromachology, and neuroscience. In this review, studies were searched on the use of scents in food experiences such as restaurants and food establishments, and a critical evaluation was performed on their aims, target population, place of the study, scents tested, foods tested, and measured parameters, and the main findings were reviewed. Case studies carried out by private companies are also presented.
  • 720
  • 12 Aug 2021
Topic Review
Discoveries on Ras Therapeutics
It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. 
  • 719
  • 10 May 2021
Topic Review
Skin Appendages
The vertebrate integument forms the external body envelope, which creates the boundary between the organism and its environment. It includes both the epithelium, derived from the ectoderm, and the underlying mesenchyme, derived from diverse sources, depending on the anatomic region. The most extensive anatomic constituent is the skin, including both the epidermis, the dermis, and its appendages: glands, scales, feathers, or hair follicle/gland complexes. These structures facilitate a broad range of functions, such as protection, thermoregulation, communication, and locomotion. Integumental surfaces also include a transparent part (the cornea) as well as the anterior three-quarters of the oral cavity, comprising the gingiva and its appendages (the teeth). 
  • 718
  • 28 Jun 2023
Topic Review
Vitamins in Treatment of Parkinson’s Disease
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder after Alzheimer’s disease. Pathophysiologically, it is characterized by intracytoplasmic aggregates of α-synuclein protein in the Lewy body and loss of dopaminergic neurons from substantia nigra pars compacta and striatum regions of the brain. Although the exact mechanism of neurodegeneration is not fully elucidated, it has been reported that environmental toxins such as MPTP, rotenone, paraquat, and MPP+ induce oxidative stress, which is one of the causative factors for it. There is no complete cure. However, the indispensable role of oxidative stress in mediating PD indicates that antioxidant therapy could be a possible therapeutic strategy against the disease. The deficiency of vitamins has been extensively co-related to PD. Dietary supplementation of vitamins with antioxidant, anti-inflammatory, anti-apoptotic, and free radical scavenging properties could be the potential neuroprotective therapeutic strategy. 
  • 715
  • 24 Feb 2023
Topic Review
Urinary Bladder Neuroendocrine Neoplasms
Urinary bladder neuroendocrine neoplasms (NENs) are classified into well-differentiated NENs, small-cell NENs, large-cell NENs, and paragangliomas.
  • 714
  • 13 Jul 2022
Topic Review
Parkinson’s Disease and Melatonin
Parkinson’s disease (PD) is a complex, multisystem disorder with both neurologic and systemic manifestations, which is usually associated with non-motor symptoms, including sleep disorders. Such associated sleep disorders are commonly observed as REM sleep behavior disorder, insomnia, sleep-related breathing disorders, excessive daytime sleepiness, restless legs syndrome and periodic limb movements. Melatonin has a wide range of regulatory effects, such as synchronizing circadian rhythm, and is expected to be a potential new circadian treatment of sleep disorders in PD patients.
  • 708
  • 28 Feb 2023
Topic Review
Presynaptic Calcium Channels
Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins.
  • 702
  • 23 Apr 2021
Topic Review
Polyphenols and Heat Stress
Heat stress is a non-specific physiological response of the body when exposed to high ambient temperatures, which can break the balance of body redox and result in oxidative stress that affects growth performance as well as the health of animal and poultry species. Polyphenols have attracted much attention in recent years due to their antioxidant ability and thus, can be an effective attenuator of heat stress.
  • 702
  • 13 Aug 2021
Topic Review
Heart Failure with Preserved Ejection Fraction: Microvascular Dysfunction
Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities.
  • 702
  • 24 Feb 2022
Topic Review
Basic Helix-Loop-Helix (bHLH) in Arabidopsis
The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones.
  • 700
  • 16 Jul 2021
Topic Review
Vascular Regulation by endothelial Cells
Human umbilical cord (HUC) is a suitable source for isolation of endothelial cells (ECs) since it has no particular ethical impediments and is considered a non-tumorigenic and less immunogenic model. for this reason, HUC represents an advantageous experimental source for the isolation of endothelial cells. The ECs can produce/release molecules that modulate vasoconstriction and vasorelaxation by smooth muscle cells (SMC).
  • 698
  • 28 Sep 2021
Topic Review
Emerita (Genus)
Emerita is a small genus of decapod crustaceans, known as sand crabs, sand bugs, sand fleas, or mole crabs. These small animals burrow in the sand in the swash zone and use their antennae for filter feeding.
  • 693
  • 31 Oct 2022
Topic Review
Melleins
Melleins are 3,4-dihydroisocoumarins mainly produced by fungi, but also by plants, insects and bacteria. These specialized metabolites play important roles in the life cycles of the producers and they are involved in many biochemical and ecological processes.
  • 692
  • 09 Jun 2021
Topic Review
Mitochondrial Functioning and Cognitive Ability
Performance in one cognitive domain, such as attentional control, is positively correlated with performance in all other cognitive domains, such as reading comprehension, and performance in all of these domains is correlated with current and predictive of later health outcomes. These relations suggest a common biological mechanism that contributes to cognition and health; moreover, this mechanism has been linked to systematic and parallel declines in cognition and health with normal aging. Mitochondrial functioning, including contributions to cellular energy production, control of oxidative stress, immunity, and intracellular signaling (among others), is well situated to explain at least some of these links. Indeed, mitochondrial dysfunction contributes to the cognitive declines (e.g., memory loss) associated with age-related diseases, such as Alzheimer’s disease, but the links are broader than this. A focus on mitochondrial functioning provides a means to better integrate research in cell biology and cognitive science, and in doing so will expand our understanding of the fundamental biological mechanisms that underlie brain and cognitive development and functioning and result in more sensitive assessments of age- and pathology-related changes in cognition.
  • 690
  • 29 Mar 2022
Topic Review
Artificial Intelligence in Cardiovascular Genetics
Polygenic diseases, which are genetic disorders caused by the combined action of multiple genes, pose unique and significant challenges for the diagnosis and management of affected patients. A major goal of cardiovascular medicine has been to understand how genetic variation leads to the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability of next generation sequencing (NGS) technologies, now provide researchers with unprecedented possibilities for dynamic and complex biological genomic analyses. Combining these technologies may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance, and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly frequent and robust genomic characterization of patients, as well the integration of genomic data with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. 
  • 690
  • 28 Mar 2022
Topic Review
Extremophilic Actinobacteria: Microbes to Medicine
Actinobacteria constitute prolific sources of novel and vital bioactive metabolites for pharmaceutical utilization. In recent years, research has focused on exploring actinobacteria that thrive in extreme conditions to unearth their beneficial bioactive compounds for natural product drug discovery. Natural products have a significant role in resolving public health issues such as antibiotic resistance and cancer. The breakthrough of new technologies has overcome the difficulties in sampling and culturing extremophiles, leading to the outpouring of more studies on actinobacteria from extreme environments. This review focuses on the diversity and bioactive potentials/medically relevant biomolecules of extremophilic actinobacteria found from various unique and extreme niches. Actinobacteria possess an excellent capability to produce various enzymes and secondary metabolites to combat harsh conditions. In particular, a few strains have displayed substantial antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), shedding light on the development of MRSA-sensitive antibiotics. Several strains exhibited other prominent bioactivities such as antifungal, anti-HIV, anticancer, and anti-inflammation. By providing an overview of the recently found extremophilic actinobacteria and their important metabolites, we hope to enhance the understanding of their potential for the medical world.
  • 689
  • 17 Jun 2021
  • Page
  • of
  • 47
ScholarVision Creations