Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Ver. Summary Created by Modification Content Size Created at Operation
1 + 3461 word(s) 3461 2021-06-28 05:05:33 |
2 trying to change the field from Biology to Material sciences - with no success... Meta information modification 3461 2021-06-29 16:35:32 | |
3 format correct -2063 word(s) 1398 2021-06-30 11:41:03 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Sartori, B. Functionalized Mesoporous Thin Films. Encyclopedia. Available online: (accessed on 05 December 2023).
Sartori B. Functionalized Mesoporous Thin Films. Encyclopedia. Available at: Accessed December 05, 2023.
Sartori, Barbara. "Functionalized Mesoporous Thin Films" Encyclopedia, (accessed December 05, 2023).
Sartori, B.(2021, June 29). Functionalized Mesoporous Thin Films. In Encyclopedia.
Sartori, Barbara. "Functionalized Mesoporous Thin Films." Encyclopedia. Web. 29 June, 2021.
Functionalized Mesoporous Thin Films

Functionalized thin films of mesoporous silica and titania can be used as scaffolds with properties as diverse as promotion of cell growth, inhibition of biofilms formation, or development of sensors based on immobilized enzymes. The possibility to pattern them increase their appeal as they can be incorporated into devices and can be tailored both with respect to architecture and functionalization. In fact, selective surface manipulation is the ground for the fabrication of advanced micro devices that combine standard micro/nanofluids with functional materials.

mesoporous thin films silica titania functionalization biotechnology biomedicine

1. Introduction 

Mesoporous materials inspired by nature have been developed in the past decades, being particularly attractive because they allow for functional design and applications [1][2].

By definition, mesoporous materials present interconnected pores with a diameter in the range of 2–50 nm, which are arranged in ordered or worm-like architecture. The whole surface can be modified incorporating ions, functional groups or even molecules, that interact with the surface as well as with bulk material, changing its properties.

In this perspective, ordered mesoporous materials play a leading role due to their versatility in terms of structural characteristics and possible applications [3]. Recently, several studies demonstrated the multiple possibilities for biotechnological applications of mesoporous materials, thanks to their biocompatibility [4][5][6] and to their high surface area that makes them ideal vectors for drug delivery [7][8][9].

Among mesoporous materials, SiO2 is one of the most used, biocompatible substrates: its well-known and tested synthesis methods, and its predictable dissolution in a fluid with physiological compatible characteristics, [3][10][4] make it an attractive substrate in biomedicine. On the other hand, TiO2 shows remarkable photocatalytic activity, making it a possible choice for sterilizing coatings [5][6].

Mesoporous thin films can be prepared via different approaches [7][8][9]: the most commonly used is the sol–gel method [11][12], in which the self-assembly of the organometallic species is driven by the evaporation of the solvents and consequent condensation of the surfactant (EISA, Evaporation Induced Self Assembly).

The sol–gel is deposited on the surface of the solid support via spray-, dip- or spin-coating. EISA process allows the production of mesoporous film on non-flat surfaces, which is a great advantage for coating surgical devices such as implants or screws [5]. After deposition, the film must be consolidated in order to remove the templating agent and stabilize the inorganic structure. The templating agent should be removed either via calcination, extraction of the template with an adequate solvent [13][14], or via UV-O3 processing [15]. Top-down techniques like UV lithography [16][17][18], Electron Beam Lithography [19] and more recently X-ray irradiation [20][21][22] allow both the consolidation and the patterning of the mesoporous structure, in order to enable the precise positioning of mesoporous areas on the substrate for the design and fabrication of novel kind of microdevices.

Surfaces can be functionalized, to immobilize active molecules [23][24] and to change the mesoporous material’s properties. With functionalization, it is possible to tune its surface hydrophilicity /hydrophobicity [25][26], to protect it from non-specific interactions with the surrounding environment [27][28], or to avoid binding of non-specific molecules [29], tailoring the characteristics to the foreseen applications. When different hierarchical surfaces of mesoporous materials are present, each of them can be functionalized selectively [30].

2. Functionalization Protocols

Organic and inorganic groups, antimicrobial compounds [31], small biomolecules [32][33], or ions can be attached to mesoporous thin films, in order to change the material properties (Figure 1).

Figure 1. Schematic illustration of the various functionalization groups of mesoporous thin films

Functionalization can be obtained in different ways [27][34][35][36], the most common methods are co-condensation, in which the functionalizing group is added to the sol–gel solution and thus is distributed throughout the whole material bulk, and post grafting, in which the functionalizing groups are attached to the mesoporous surface after the film consolidation.

The functionalization strategy should be carefully designated [37][38][39].

In the following, we will summarize some applications of functionalized silica and titania thin films, either produced via co-condensation or via post grafting. Functionalization with groups ranging from ions to biomolecules is described, aiming to emphasize the importance of surface modification of mesoporous materials for biotechnology and biomedicine.

3. Functional Groups

Functional groups, that involve for instance carboxy, hydroxyl, amino and thiol groups, or organometallic species, can be used to change the surface properties of mesoporous materials to favour specific interactions with bioactive molecules: [40].

Silica mesoporous nanomaterial can be functionalized with organosilanes [R-Si(OR)3] via post-synthetic grafting, mainly to change the hydrophilic/hydrophobic character without affecting the mesostructure [41]. A table which summarizes the main functional moieties reported in the following sections and their use for mesoporous silica and titania thin films is available in Sartori et al., Micromachines 2021, 12(7), 740.

3.1. Change of Hydrophilicity of the Surface

Organosilanes like aminopropyl triethoxysilane (APTES) ,[R=(CH2)3NH2], or 1H,1H,2H,2H-perfluorooctyl dimethylchlorosilane (PFODMCS) can be used to functionalize the mesoporous silica surface to alterate its wetting properties [42][43]. and can be used to attach other organic functional groups [44].

3.2. Protection against Dissolution

While titania thin films exhibit high chemical stability in biologically relevant conditions, silica thin films in aqueous environment are hydrolyzed and form silicilic acid or silicate species [4]. This progressive dissolution of the silica matrix promotes the release not only of the carried drug, but also of solubilized silica which might nucleate and accumulate randomly, posing a toxicity risk to the organism [45][46].

Functionalization with amino-groups [40][47] mercaptopropyl groups [48] or PEG [29] have a protective effect against the dissolution of the mesoporous silica film [46].

3.3. Drug Loading

Surface modifications or two-steps functionalization might be necessary to adsorb enzymes or hydrophobic drugs to the mesoporous matrix [49].

Therapeutic molecules can be administered via mesoporous TiO2 thin films when a long-term, slow local drug release is desired, as in the case of bone-implant integration [50].

4. Antimicrobials

Recently, the emergence of antibiotic-resistant bacterial infections raised the necessity to develop materials with amtimicrobial effects for applications in the biomedical field. In particular, biocompatible coatings with antibacterial properties are gaining more and more attention from the scientific community involved in the research and development of materials for biotechnology.

Mesoporous silica and titania thin films are promising tools as coatings to prevent bacterial colonization on surgical implants, thanks to the possibility to load the material with antibiotic drugs coupled with its low adhesive properties for biofilm growth prevention.[50].

Functionalization with thiol groups allows for loading the mesoporous matrix with peptides or small molecules with antimicrobial activity [48][51].  

5. Biofunctionalization

Enzymes can be encapsulated into mesoporous materials [52] for the production of biosensors and bioreactors, both in co-condensation processes and by adsorption to the condensed material surface [53]. The encapsulated molecules are stable, even in environmental conditions that would normally lead to denaturation [54][55][56] such as extreme pH or temperature, and maintain their activity longer if compared to enzymes free in solution.

Patterning and subsequent functionalization on desired regions of the mesoporous film is a challenge for the production of biosensing devices: this would allow the creation of microfluidic circuits and arrays of precise geometry, which can be selectively functionalized for the production of biosensors [57].

6. Ions

Despite the fact that silica substrates undergo biodegradation in in-vivo conditions due to the solubilization of silica matrix and the consequent formation of silicilic acid [4][58], studies have shown that they can be efficiently sterilized and still be used as bioactive coatings, having the advantage of being a source of ions necessary for cell differentiation if submerged in a solution containing inorganic ions similar to body fluid [3][59].

Several studies report the capability of mesoporous TiO2 to promote bone cell proliferation when functionalized with bioactive ions [60]. Magnesium, calcium, strontium or zinc are known to promote cell differentiation of bone cell precursors and can be adsorbed on TiO2 mesoporous material [34][61][62][63][64][65]. The slow release of these ions from the mesoporous material coated on bone-implant devices such as nails or screws, for instance, promotes better bone mineralization and implant integration. To circumvent the difficulties of complexing divalent ions to the mesoporous matrix, and to enhance their adsorption on the mesopores and subsequent slow release, surface-functionalized hybrid titania–silica films can be synthesized, coupling carboxylate groups via post-grafting to the surface before ion loading [66].

Silica and titania mesoporous thin films can also be combined to gain better antimicrobial performance still maintaining the optical properties. The photocatalytic activity of TiO2 when irradiated, can be coupled with the high surface area of SiO2 mesoporous thin films for selective immobilization and long-term release of antimicrobial substances such as Ag+ [67]. Mesoporous hybrid thin films loaded with silver ions, exhibit antimicrobial activity comparable to that observed in the substrates loaded with silver nanoparticles, having the advantage that the optical properties of transparent mesoporous coatings are not affected.


  1. Soler-Illia GJ, Sanchez C, Lebeau B, P. J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev. 2002, 4093–4138.
  2. Sanchez, C.; Arribart, H.; Guille, M. M. G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 2005, 4 (4), 277–288 DOI: 10.1038/nmat1339.
  3. Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3. J. Biomed. Mater. Res. 1990, 24 (6), 721–734 DOI: 10.1002/jbm.820240607.
  4. Bindini, E.; Chehadi, Z.; Faustini, M.; Albouy, P. A.; Grosso, D.; Cattoni, A.; Chanéac, C.; Azzaroni, O.; Sanchez, C.; Boissière, C. Following in Situ the Degradation of Mesoporous Silica in Biorelevant Conditions: At Last, a Good Comprehension of the Structure Influence. ACS Appl. Mater. Interfaces 2020, 12 (12), 13598–13612 DOI: 10.1021/acsami.9b19956.
  5. Xia, W.; Grandfield, K.; Hoess, A.; Ballo, A.; Cai, Y.; Engqvist, H.; Xia W, Grandfield K, Hoess A, Ballo A, Cai Y, E. H. Mesoporous titanium dioxide coating for metallic implants. J Biomed Mater Res B Appl Biomater 2012, 100 (1), 82–93 DOI: 10.1002/jbm.b.31925.
  6. Pezzoni, M.; Catalano, P. N.; Delgado, D. C.; Pizarro, R. A.; Bellino, M. G.; Costa, C. S. Antibiofilm effect of mesoporous titania coatings on Pseudomonas aeruginosa biofilms. J. Photochem. Photobiol. B Biol. 2020, 203 (November 2018), 111762 DOI: 10.1016/j.jphotobiol.2019.111762.
  7. Kumar, S.; Malik, M. M.; Purohit, R. Synthesis Methods of Mesoporous Silica Materials. Mater. Today Proc. 2017, 4 (2), 350–357 DOI: 10.1016/j.matpr.2017.01.032.
  8. Zhang, W.; Tian, Y.; He, H.; Xu, L.; Li, W.; Zhao, D. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. Natl. Sci. Rev. 2020, 7 (11), 1702–1725 DOI: 10.1093/nsr/nwaa021.
  9. Huang, R.; Shen, Y. W.; Guan, Y. Y.; Jiang, Y. X.; Wu, Y.; Rahman, K.; Zhang, L. J.; Liu, H. J.; Luan, X. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater. 2020, 116, 1–15 DOI: 10.1016/j.actbio.2020.09.009.
  10. Pezzoni, M.; Catalano, P. N.; Pizarro, R. A.; Desimone, M. F.; Soler-Illia, G. J. A. A.; Bellino, M. G.; Costa, C. S. Antibiofilm effect of supramolecularly templated mesoporous silica coatings. Mater. Sci. Eng. C 2017, 77, 1044–1049 DOI: 10.1016/j.msec.2017.04.022.
  11. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26 (1), 62–69 DOI: 10.1016/0021-9797(68)90272-5.
  12. Brinker, C. J.; Scherer, G. W. Sol-Gel Science The physics and chemistry of sol-gel processing; Academic Press Inc., Ed.; Elsevier B.V., 1990.
  13. Giménez, G.; Ybarra, G.; Soler-Illia, G. J. A. A. Preparation of mesoporous silica thin films at low temperature: a comparison of mild structure consolidation and template extraction procedures. J. Sol-Gel Sci. Technol. 2020, 96 (2), 287–296 DOI: 10.1007/s10971-020-05410-z.
  14. Gonzalez Solveyra, E.; Fuertes, M. C.; Soler-Illia, G. J. A. A.; Angelomé, P. C. 2D-SAXS in Situ Measurements as a Tool to Study Elusive Mesoporous Phases: The Case of p6mm TiO2. J. Phys. Chem. C 2017, 121 (6), 3623–3631 DOI: 10.1021/acs.jpcc.6b12112.
  15. Chemin, N.; Klotz, M.; Rouessac, V.; Ayral, A.; Barthel, E. Mechanical properties of mesoporous silica thin films: Effect of the surfactant removal processes. Thin Solid Films 2006, 495 (1–2), 210–213 DOI: 10.1016/j.tsf.2005.08.260.
  16. Imai, H.; Hirashima, H.; Awazu, K. Alternative modification methods for sol-gel coatings of silica, titania and silica-titania using ultraviolet irradiation and water vapor. Thin Solid Films 1999, 351 (1–2), 91–94 DOI: 10.1016/S0040-6090(98)01784-2.
  17. Doshi, D. A.; Huesing, N. K.; Lu, M.; Fan, H.; Lu, Y.; Simmons-Potter, K.; Potter, J.; Hurd, A. J.; Brinker, C. J. Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science (80-. ). 2000, 290 (5489), 107–111 DOI: 10.1126/science.290.5489.107.
  18. Dattelbaum, A. M.; Amweg, M. L.; Ecke, L. E.; Yee, C. K.; Shreve, A. P.; Parikh, A. N. Photochemical pattern transfer and enhancement of thin film silica mesophases. Nano Lett. 2003, 3 (6), 719–722 DOI: 10.1021/nl0341279.
  19. Della Giustina, G.; Prasciolu, M.; Brusatin, G.; Guglielmi, M.; Romanato, F. Electron beam lithography of hybrid sol-gel negative resist. Microelectron. Eng. 2009, 86 (4–6), 745–748 DOI: 10.1016/j.mee.2008.12.044.
  20. Innocenzi, P.; Malfatti, L.; Falcaro, P. Hard X-rays meet soft matter: When bottom-up and top-down get along well. Soft Matter 2012, 8 (14), 3722–3729 DOI: 10.1039/c2sm07028f.
  21. Marmiroli, B.; Amenitsch, H. X-ray lithography and small-angle X-ray scattering: A combination of techniques merging biology and materials science. Eur. Biophys. J. 2012, 41 (10), 851–861 DOI: 10.1007/s00249-012-0843-3.
  22. Innocenzi, P.; Malfatti, L.; Marmiroli, B.; Falcaro, P. Hard X-rays and soft-matter: Processing of sol-gel films from a top down route. J. Sol-Gel Sci. Technol. 2014, 70 (2), 236–244 DOI: 10.1007/s10971-013-3227-y.
  23. Innocenzi, P.; Malfatti, L. Mesoporous thin films: Properties and applications. Chem. Soc. Rev. 2013, 42 (9), 4198–4216 DOI: 10.1039/c3cs35377j.
  24. Park, S. S.; Ha, C. S. Organic-inorganic hybrid mesoporous silicas: Functionalization, pore size, and morphology control. Chem. Rec. 2006, 6 (1), 32–42 DOI: 10.1002/tcr.20070.
  25. Jung, J. I.; Jae, Y. B.; Bae, B. S. Characterization and mesostructure control of mesoporous fluorinated organosilicate films. J. Mater. Chem. 2004, 14 (13), 1988–1994 DOI: 10.1039/b401774a.
  26. Hu, Y.; Bouamrani, A.; Tasciotti, E.; Li, L.; Liu, X.; Ferrari, M. Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein. ACS Nano 2010, 4 (1), 439–451 DOI: 10.1021/nn901322d.
  27. Boullanger, A.; Alauzun, J.; Mehdi, A.; Reyé, C.; Corriu, R. J. P. Generic way for functionalised well-ordered cubic mesoporous silica via direct synthesis approach. New J. Chem. 2010, 34 (4), 738–743 DOI: 10.1039/b9nj00734b.
  28. Bass, J. D.; Grosso, D.; Boissiere, C.; Belamie, E.; Coradin, T.; Sanchez, C. Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions. Chem. Mater. 2007, 19 (17), 4349–4356 DOI: 10.1021/cm071305g.
  29. He, Q.; Zhang, J.; Shi, J.; Zhu, Z.; Zhang, L.; Bu, W.; Guo, L.; Chen, Y. Biomaterials The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 2010, 31 (6), 1085–1092 DOI: 10.1016/j.biomaterials.2009.10.046.
  30. Tiemann, M.; Weinberger, C. Selective Modification of Hierarchical Pores and Surfaces in Nanoporous Materials. Adv. Mater. Interfaces 2021, 8 (4), 1–17 DOI: 10.1002/admi.202001153.
  31. Tamanna, T.; Bulitta, J. B.; Landersdorfer, C. B.; Cashin, V.; Yu, A. Stability and controlled antibiotic release from thin films embedded with antibiotic loaded mesoporous silica nanoparticles. RSC Adv. 2015, 5 (130), 107839–107846 DOI: 10.1039/c5ra22976f.
  32. Pérez-Anguiano, O.; Wenger, B.; Pugin, R.; Hofmann, H.; Scolan, E. Controlling mesopore size and processability of transparent enzyme-loaded silica films for biosensing applications. ACS Appl. Mater. Interfaces 2015, 7 (4), 2960–2971 DOI: 10.1021/am508630c.
  33. Magner, E. Immobilisation of enzymes on mesoporous silicate materials. Chem. Soc. Rev. 2013, 42 (15), 6213–6222 DOI: 10.1039/c2cs35450k.
  34. Galli, S.; Naito, Y.; Karlsson, J.; He, W.; Miyamoto, I.; Xue, Y.; Andersson, M.; Mustafa, K.; Wennerberg, A.; Jimbo, R. Local release of magnesium from mesoporous TiO2 coatings stimulates the peri-implant expression of osteogenic markers and improves osteoconductivity in vivo. Acta Biomater. 2014, 10 (12), 5193–5201 DOI: 10.1016/j.actbio.2014.08.011.
  35. Soler-Illia, G. J. A. A.; Innocenzi, P. Mesoporous hybrid thin films: The physics and chemistry beneath. Chem. - A Eur. J. 2006, 12 (17), 4478–4494 DOI: 10.1002/chem.200500801.
  36. Escobar, A.; Yate, L.; Grzelczak, M.; Amenitsch, H.; Moya, S. E.; Bordoni, A. V.; Angelomé, P. C. One-Step Synthesis of Mesoporous Silica Thin Films Containing Available COOH Groups. ACS Omega 2017, 2 (8), 4548–4555 DOI: 10.1021/acsomega.7b00560.
  37. Athens, G. L.; Shayib, R. M.; Chmelka, B. F. Functionalization of mesostructured inorganic-organic and porous inorganic materials. Curr. Opin. Colloid Interface Sci. 2009, 14 (4), 281–292 DOI: 10.1016/j.cocis.2009.05.012.
  38. Calvo, A.; Joselevich, M.; Soler-Illia, G. J. A. A.; Williams, F. J. Chemical reactivity of amino-functionalized mesoporous silica thin films obtained by co-condensation and post-grafting routes. Microporous Mesoporous Mater. 2009, 121 (1–3), 67–72 DOI: 10.1016/j.micromeso.2009.01.005.
  39. Bellino, M. G.; Tropper, I.; Duran, H.; Regazzoni, A. E.; Soler-Illia, G. J. A. A. Polymerase-functionalized hierarchical mesoporous titania thin films: Towards a nanoreactor platform for DNA amplification. Small 2010, 6 (11), 1221–1225 DOI: 10.1002/smll.201000066.
  40. Nicole, L.; Boissière, C.; Grosso, D.; Quach, A.; Sanchez, C. Mesostructured hybrid organic-inorganic thin films. J. Mater. Chem. 2005, 15 (35–36), 3598–3627 DOI: 10.1039/b506072a.
  41. Trindade, F.; Politi, M. J. Sol-Gel Chemistry-Deals With Sol-Gel Processes; Elsevier Inc., 2019.
  42. Marmiroli B., Sartori B., Kyvik A., Ratera I., A. H. Structural study of the hydration of lipid membranes upon interaction with mesoporous supports prepared by standard methods and/or X-ray irradiation. Front. Mater. Sect. Colloid. Mater. Interfaces 2021, submitted.
  43. Khalil, A.; Zimmermann, M.; Bell, A. K.; Kunz, U.; Hardt, S.; Kleebe, H. J.; Stark, R. W.; Stephan, P.; Andrieu-Brunsen, A. Insights into the interplay of wetting and transport in mesoporous silica films. J. Colloid Interface Sci. 2020, 560, 369–378 DOI: 10.1016/j.jcis.2019.09.093.
  44. Paris, J. L.; Cabanas, M. V.; Manzano, M.; Vallet-Regí, M. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano 2015, 9 (11), 11023–11033 DOI: 10.1021/acsnano.5b04378.
  45. Rosenholm, J. M.; Sahlgren, C.; Lindén, M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - Opportunities & challenges. Nanoscale 2010, 2 (10), 1870–1883 DOI: 10.1039/c0nr00156b.
  46. Fontecave, T.; Sanchez, C.; Azaïs, T.; Boissiére, C. Chemical modification as a versatile tool for tuning stability of silica based mesoporous carriers in biologically relevant conditions. Chem. Mater. 2012, 24 (22), 4326–4336 DOI: 10.1021/cm302142k.
  47. De Jong WH, B. P. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008, 3 (2), 133–149.
  48. Izquierdo-Barba, I.; Vallet-Regí, M.; Kupferschmidt, N.; Terasaki, O.; Schmidtchen, A.; Malmsten, M. Incorporation of antimicrobial compounds in mesoporous silica film monolith. Biomaterials 2009, 30 (29), 5729–5736 DOI: 10.1016/j.biomaterials.2009.07.003.
  49. Björk, E. M.; Baumann, B.; Hausladen, F.; Wittig, R.; Lindén, M. Cell adherence and drug delivery from particle based mesoporous silica films. RSC Adv. 2019, 9 (31), 17745–17753 DOI: 10.1039/c9ra02823d.
  50. Escobar, A.; Muzzio, N.; Coy, E.; Liu, H.; Bindini, E.; Andreozzi, P.; Wang, G.; Angelomé, P.; Delcea, M.; Grzelczak, M.; et al. Antibacterial Mesoporous Titania Films with Embedded Gentamicin and Surface Modified with Bone Morphogenetic Protein 2 to Promote Osseointegration in Bone Implants. Adv. Mater. Interfaces 2019, 6 (9), 1–12 DOI: 10.1002/admi.201801648.
  51. Atefyekta, S.; Ercan, B.; Karlsson, J.; Taylor, E.; Chung, S.; Webster, T. J.; Andersson, M. Antimicrobial performance of mesoporous titania thin films: Role of pore size, hydrophobicity, and antibiotic release. Int. J. Nanomedicine 2016, 11, 977–990 DOI: 10.2147/IJN.S95375.
  52. Jahnke, J. P.; Idso, M. N.; Hussain, S.; Junk, M. J. N.; Fisher, J. M.; Phan, D. D.; Han, S.; Chmelka, B. F. Functionally Active Membrane Proteins Incorporated in Mesostructured Silica Films. J. Am. Chem. Soc. 2018, 140 (11), 3892–3906 DOI: 10.1021/jacs.7b06863.
  53. Bellino, M. G.; Regazzoni, A. E.; Soler-Illia, G. J. A. A. Amylase-Functionalized mesoporous silica thin films as robust biocatalyst platforms. ACS Appl. Mater. Interfaces 2010, 2 (2), 360–365 DOI: 10.1021/am900645b.
  54. Lee, C. H.; Lin, T. S.; Mou, C. Y. Mesoporous materials for encapsulating enzymes. Nano Today 2009, 4 (2), 165–179 DOI: 10.1016/j.nantod.2009.02.001.
  55. Kuo, P.-C.; Lin, Z.-X.; Wu, T.-Y.; Hsu, C.-H.; Lin, H.-P.; Wu, T.-S. Effects of morphology and pore size of mesoporous silicas on the efficiency of an immobilized enzyme. RSC Adv. 2021, 11 (17), 10010–10017 DOI: 10.1039/d1ra01358k.
  56. Frančič, N.; Bellino, M. G.; Soler-Illia, G. J. A. A.; Lobnik, A. Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: Effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability. Analyst 2014, 139 (12), 3127–3136 DOI: 10.1039/c4an00152d.
  57. Doherty, C. M.; Gao, Y.; Marmiroli, B.; Amenitsch, H.; Lisi, F.; Malfatti, L.; Okada, K.; Takahashi, M.; Hill, A. J.; Innocenzi, P.; et al. Microfabrication of mesoporous silica encapsulated enzymes using deep X-ray lithography. J. Mater. Chem. 2012, 22 (32), 16191–16195 DOI: 10.1039/c2jm32863a.
  58. Chen, Y.; Chen, H.; Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25 (23), 3144–3176 DOI: 10.1002/adma.201205292.
  59. Chai, Y.; Yamada, S.; Kobayashi, K.; Hasegawa, K.; Tagaya, M. Surface-functionalization of mesoporous silica films for effective osteoblast-like cell culture. Microporous Mesoporous Mater. 2019, 286 (May), 1–8 DOI: 10.1016/j.micromeso.2019.05.031.
  60. Park, J. W.; Kim, Y. J.; Jang, J. H. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces. Clin. Oral Implants Res. 2010, 21 (4), 398–408 DOI: 10.1111/j.1600-0501.2009.01863.x.
  61. Zhang, W.; Cao, H.; Zhang, X.; Li, G.; Chang, Q.; Zhao, J.; Qiao, Y.; Ding, X.; Yang, G.; Liu, X.; et al. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration. Nanoscale 2016, 8 (9), 5291–5301 DOI: 10.1039/c5nr08580b.
  62. Yoshizawa, S.; Brown, A.; Barchowsky, A.; Sfeir, C. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014, 10 (6), 2834–2842 DOI: 10.1016/j.actbio.2014.02.002.
  63. Grandfield, K.; Pujari, S.; Ott, M.; Engqvist, H.; Xia, W. Effect of Calcium and Strontium on Mesoporous Titania Coatings for Implant Applications. J. Biomater. Nanobiotechnol. 2013, 04 (02), 107–113 DOI: 10.4236/jbnb.2013.42014.
  64. Lim, S. S.; Chai, C. Y.; Loh, H. S. In vitro evaluation of osteoblast adhesion, proliferation and differentiation on chitosan-TiO2 nanotubes scaffolds with Ca2 + ions. Mater. Sci. Eng. C 2017, 76, 144–152 DOI: 10.1016/j.msec.2017.03.075.
  65. Galli, S.; Naito, Y.; Karlsson, J.; He, W.; Andersson, M.; Wennerberg, A.; Jimbo, R. Osteoconductive Potential of Mesoporous Titania Implant Surfaces Loaded with Magnesium: An Experimental Study in the Rabbit. Clin. Implant Dent. Relat. Res. 2015, 17 (6), 1048–1059 DOI: 10.1111/cid.12211.
  66. Escobar, A.; Muzzio, N. E.; Martínez-Villacorta, Á. M.; Abarrategi, A.; Bindini, E.; Grzelczak, M.; Bordoni, A. V.; Angelomé, P. C.; Moya, S. E. Mesoporous titania coatings with carboxylated pores for complexation and slow delivery of strontium for osteogenic induction. Appl. Surf. Sci. 2020, 510 (December 2019), 145172 DOI: 10.1016/j.apsusc.2019.145172.
  67. Catalano, P. N.; Pezzoni, M.; Costa, C.; Soler-Illia, G. J. de A. A.; Bellino, M. G.; Desimone, M. F. Optically transparent silver-loaded mesoporous thin film coating with long-lasting antibacterial activity. Microporous Mesoporous Mater. 2016, 236, 158–166 DOI: 10.1016/j.micromeso.2016.08.034.
Subjects: Biology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 428
Revisions: 3 times (View History)
Update Date: 30 Jun 2021