You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Metallic FexGeTe2 (3 ≤ x ≤ 7) Ferromagnets
Thermal fluctuations in two-dimensional (2D) isotropy systems at non-zero finite temperatures can destroy the long-range (LR) magnetic order due to the mechanisms addressed in the Mermin-Wanger theory. However, the magnetic anisotropy related to spin–orbit coupling (SOC) may stabilize magnetic order in 2D systems. 2D FexGeTe2 (3 ≤ x ≤ 7) with a high Curie temperature (TC) has not only undergone significant developments in terms of synthetic methods and the control of ferromagnetism (FM), but is also being actively explored for applications in various devices. 
  • 1.5K
  • 13 Nov 2023
Topic Review
Catalytic Hydrogenation of Carbon Dioxide
Once fundamental difficulties such as active sites and selectivity are fully resolved, metal-free catalysts such as 3D graphene or carbon nanotubes (CNT) are very cost-effective substitutes for the expensive noble metals used for catalyzing CO2. A viable method for converting environmental wastes into useful energy storage or industrial wealth, and one which also addresses the environmental and energy problems brought on by emissions of CO2, is CO2 hydrogenation into hydrocarbon compounds. The creation of catalytic compounds and knowledge about the reaction mechanisms have received considerable attention. Numerous variables affect the catalytic process, including metal–support interaction, metal particle sizes, and promoters. CO2 hydrogenation into different hydrocarbon compounds like lower olefins, alcoholic composites, long-chain hydrocarbon composites, and fuels, in addition to other categories.
  • 1.5K
  • 28 Jan 2023
Topic Review
Nanotoxicity in Human Primary and Cancer Cells
Nanomaterial toxicity tests using normal and cancer cells may yield markedly different results. Nanomaterial toxicity between cancer and primary human cells was compared to determine the basic cell line selection criteria for nanomaterial toxicity analyses.
  • 1.5K
  • 31 Mar 2022
Topic Review
Electromagnetic Interference Shielding
Graphene is the first two-dimensional material that becomes the center material in various research areas of material science, chemistry, condensed matter, and engineering due to its advantageous properties, including larger specific area, lower density, outstanding electrical conductivity, and ease of processability. These properties attracted the attention of material researchers resulted in a large number of publications on EMI shielding in a short time and play a central role in addressing the problems and challenges faced in this modern era of electronics by electromagnetic interference. After the popularity of graphene, the community of material researchers investigated other two-dimensional materials like MXenes, hexagonal boron nitride, black phosphorous, transition metal dichalcogenides, and layered double hydroxides, to additionally enhance the EMI shielding response of materials.
  • 1.5K
  • 14 Aug 2023
Topic Review
Arsenic Removal
Arsenic (As) removal from drinking water is of critical importance because in inorganic form As is highly toxic to all life forms, is a confirmed carcinogen and is of significant environmental concern. As contamination in drinking water alone threatens >150 million people all over the world. In order to address the increasing demand of As-free water; innovative nanofiltration (NF) strategies for As-removal have been advanced. This article presents a critical overview of the current status of nanomaterial-facilitated NF membranes identifying key deficiencies  needs and challenges, to stimulate future research and progress. Finally, the future prospects and trends are also highlighted.
  • 1.5K
  • 20 Jul 2020
Topic Review
Nanomaterials for Viral Diseases Diagnosis, Prevention, and Treatment
Nanomaterials can be tailored for specific uses by modulating physical and chemical properties, including size, morphology, surface charge, and solubility. Due to these controllable properties, nanomaterials have been used in biosensors to potentiate target-specific reactions that respond to biochemical environments, such as temperature, pH, and the presence of enzymes.
  • 1.5K
  • 14 Oct 2021
Topic Review
Metal–Organic Framework-Based Materials for Photocatalytic Nitrogen Fixation
Metal–organic frameworks (MOFs) are coordination polymers with high porosity that are constructed from molecular engineering. Constructing MOFs as photocatalysts for the reduction of nitrogen to ammonia is a newly emerging but fast-growing field, owing to MOFs’ large pore volumes, adjustable pore sizes, controllable structures, wide light harvesting ranges, and high densities of exposed catalytic sites. They are also growing in popularity because of the pristine MOFs that can easily be transformed into advanced composites and derivatives, with enhanced catalytic performance.
  • 1.5K
  • 18 Oct 2022
Topic Review
Pulsed Laser Ablation in Liquids
Laser synthesis emerges as a suitable technique to produce ligand-free nanoparticles, alloys and functionalized nanomaterials for catalysis, imaging, biomedicine, energy and environmental applications. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment and conjugate a large variety of nanostructures in a scalable and clean way. 
  • 1.5K
  • 19 Feb 2021
Topic Review
Inorganic and Polymeric Nanoparticles
Nanomedicine is a multidisciplinary field  for medical purposes and can be defined as the use of nanomaterials for diagnosis, monitoring, control, prevention, and treatment of diseases.
  • 1.5K
  • 28 Jan 2021
Topic Review
Mitotane Lipid Nanocarriers and Enantiomers
Emerging studies suggested that the S-(-)-mitotane is more potent than the R-(+)-mitotane for AdrenoCortical Carcinoma (ACC) treatment. Currently, mitotane is the only FDA-approved drug . Therefore, we suggest that the production of pure and active S-(-)-mitotane might offer synergic or additive benefits for ACC patients, and even better if combined to solid lipid-based nanocarriers, and smart/advanced nanocarriers. 
  • 1.5K
  • 08 Dec 2020
Topic Review
Graphene-Metal Oxide Semiconductor Nanocomposite
Graphene is one of the most favorite materials for materials science research owing to its distinctive chemical and physical properties, such as superior conductivity, extremely larger specific surface area, and good mechanical/chemical stability with the flexible monolayer structure. Graphene is considered as a supreme matrix and electron arbitrator of semiconductor nanoparticles for environmental pollution remediation.
  • 1.5K
  • 07 Dec 2020
Topic Review
Core–Shell Pigments Nanostructure
Uses of novel technologies for improving the durability and lifespan of the construction materials have emerged as viable solutions toward the sustainable future wherein the coating industry plays a significant role in economy growth and better livelihoods. Thus, the continual innovation of various technologies to introduce diverse market products has become indispensable. Properties of materials like color stability under UV, elevated temperatures and aggressive environments, and skid and abrasion resistance are the main challenges faced by commercial coating materials, leading to more demand of natural materials as sustainable agents. Lately, nanostructured core–shell pigments with unique compositions have widely been utilized in composite materials to enhance their properties. Core–shell particles exhibit smart properties and have immense benefits when combined with building materials. 
  • 1.5K
  • 13 Jul 2021
Topic Review
Organic Photodetectors
Organic photodetectors (OPDs) have gained increasing interest as they offer cost-effective fabrication methods using solution processes and a tunable spectral response range, making them particularly attractive for large area image sensors on lightweight flexible substrates. Carrier blocking layers engineering is very important to the high performance of OPDs that can select a certain charge carriers (holes or electrons) to be collected and suppress another carrier. Carrier blocking layers of OPDs play a critical role in reducing dark current, boosting their efficiency and long-time stability.
  • 1.5K
  • 26 Jul 2021
Topic Review
Iron Oxide Nanoparticles
Iron oxide nanoparticles (IONs) have shown promising potential as delivery vehicles and cellular markers for theranostic applications. Their high biocompatibility, superparamagnetic properties and exceptional surface-coating versatility have facilitated the development of IONs that adequately interact with biological environments. The strategical modification of ION architectures towards performing highly specialized functions has allowed the rational design of next-generation nanoparticles for biomedical applications.
  • 1.5K
  • 07 Jan 2021
Topic Review
Metal Oxide-Based Photocatalysis
The improper disposal of toxic and carcinogenic organic substances resulting from the manufacture of dyes, drugs and pesticides can contaminate aquatic environments and potable water resources and cause serious damage to animal and human health and to the ecosystem. In this sense, heterogeneous photocatalysis stand out as one effective and cost-effective water depollution technique. The use of metal oxide nanocomposites (MON), from the mixture of two or more oxides or between these oxides and other functional semiconductor materials, have gained increasing attention from researchers and industrial developers as a potential alternative to produce efficient and environmentally friendly photocatalysts for the remediation of water contamination by organic compounds.
  • 1.5K
  • 08 Aug 2023
Topic Review
Chitosan-Based Nanomaterials
Chitosan has emerged as a biodegradable, nontoxic polymer with multiple beneficial applications in the agricultural and biomedical sectors. As nanotechnology has evolved as a promising field, researchers have incorporated chitosan-based nanomaterials in a variety of products to enhance their efficacy and biocompatibility. Moreover, due to its inherent antimicrobial and chelating properties, and the availability of modifiable functional groups, chitosan nanoparticles were also directly used in a variety of applications. In this section, the use of chitosan-based nanomaterials in agricultural and biomedical fields related to the management of abiotic stress in plants, water availability for crops, controlling foodborne pathogens, and cancer photothermal therapy is discussed. Overall, chitosan-based nanomaterials show promising characteristics for sustainable agricultural practices and effective healthcare in an eco-friendly manner.
  • 1.5K
  • 15 Oct 2020
Topic Review
Seed-Layer Free ZnSnO3 Nanowires
ZnSnO3 semiconductor nanostructures have several applications as photocatalysis, gas sensors, and energy harvesting. However, due to its multicomponent nature, the synthesis is far more complex than its binary counter parts. The complexity increases even more when aiming for low-cost and low-temperature processes as in hydrothermal methods. Knowing in detail the influence of all the parameters involved in these processes is imperative, in order to properly control the synthesis to achieve the desired final product. Thus, this paper presents a study of the influence of the physical parameters involved in the hydrothermal synthesis of ZnSnO3 nanowires, namely volume, reaction time, and process temperature. Based on this study a growth mechanism for the complex Zn:Sn:O system is proposed. Two zinc precursors, zinc chloride and zinc acetate, were studied, showing that although the growth mechanism is inherent to the material itself, the chemical reactions for different conditions need to be considered.
  • 1.5K
  • 24 Sep 2020
Topic Review
Supramolecular Chemistry: Host–Guest Molecular Complexes
The host–guest (HG) interactions in two-dimensional (2D) permeable porous linkages are growing expeditiously due to their future applications in biocatalysis, separation technology, or nanoscale patterning. In host–guest (HG) interaction, distinctive structural complexes development occurs via non-covalent associations. There is a growing curiosity in executing supramolecular HG structures for assembling organic solvents and aqueous solutions on compact planes.
  • 1.5K
  • 09 Jul 2021
Topic Review
TiOPhotocatalysis
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. 
  • 1.5K
  • 17 Jul 2023
Topic Review
Nanoliposomes and Tocosomes as Nanocarriers in Food Industry
Nanoscale lipid bilayers, or nanoliposomes, are generally spherical vesicles formed by the dispersion of phospholipid molecules in a water-based medium by energy input. Nanoliposomes and tocosomes are able to provide protection and release of sensitive food-grade bioactive materials in a sustained manner. They are being utilized for the encapsulation of different types of bioactive materials (such as drugs, vaccines, antimicrobials, antioxidants, minerals and preservatives), for the enrichment and fortification of different food and nutraceutical formulations and manufacturing of functional products.
  • 1.5K
  • 11 Nov 2021
  • Page
  • of
  • 42
Academic Video Service