Topic Review
3D Bioprinting Technology
3D bioprinting, an additive manufacturing process, is a pioneering technology that prints 3D structures with biocompatible materials including living cells (i.e., bioinks).
  • 1.2K
  • 22 Mar 2022
Topic Review
3D Braiding Technology
3D braiding technologies enable the production of structures with complex geometry, which are often used for lightweight solutions, for example in automotive engineering. In addition, medical technology offers wide-ranging applications for 3D braiding technology. 3D braided structures are defined as those with yarns that intersect in all three spatial directions. 3D braiding processes allow the fiber orientation to be easily influenced, thus ensuring high strength and stiffness with reduced mass.
  • 2.0K
  • 25 Aug 2021
Topic Review
3D Cell Culture
A 3D cell culture is an artificially created environment in which biological cells are permitted to grow or interact with their surroundings in all three dimensions. Unlike 2D environments (e.g. a Petri dish), a 3D cell culture allows cells in vitro to grow in all directions, similar to how they would in vivo. These three-dimensional cultures are usually grown in bioreactors, small capsules in which the cells can grow into spheroids, or 3D cell colonies. Approximately 300 spheroids are usually cultured per bioreactor.
  • 1.1K
  • 30 Nov 2022
Topic Review
3D Cell Culture Technology
Unlike the 2D cultures, which grow by attaching to the bottom as a monolayer, 3D cell culture refers to cells aggregated and expressed as a single tissue or form. Moreover, the 3D-cultured cells are attached to an artificially created ECM environment to interact with or grow with the surrounding environment. Therefore, unlike 2D cell cultures, cell growth in a 3D environment allows cells to grow in multiple directions rather than in a single direction in vitro, which is similar to in vivo conditions. Upon comparison, the 3D cell culture exhibits several advantages: (1) A similar biomimetic model, which is more physiologically relevant. (2) A 3D culture exhibits a high level of structural complexity and maintains homeostasis for longer. (3) 3D models can indicate how different types of cells interact. (4) 3D cultures can reduce the use of animal models. (5) They are a good simulator for the treatment of disease groups including cancer tumors.
  • 897
  • 17 Nov 2021
Topic Review
3D Geological Property Modeling Methods
Three-dimensional (3D) geological property modeling is used to quantitatively characterize various geological attributes in 3D space based on geostatistics with the help of computer visualization technology, and the results are often stored in grid data. The 3D geological property modeling includes two main components, grid model generation and property interpolation.
  • 1.1K
  • 15 Jun 2022
Topic Review
3D Laser Scanner in a Structural Framework
As interest in smart construction technology increases, various smart construction technologies are being used for sustainable construction management. Among these technologies, 3D laser scanning technology receives data such as the speed, time, direction, and distance of light or laser beams reflected from the target object, allowing the representation of the object’s shape in a 3D-coordinate-based point cloud. Currently, a variety of equipment is used in 3D laser scanning, with the time-of-flight (TOF) method and phase-shift method commonly employed for laser scanning to detect the wavelength. This technology stands out for phenomena analysis and monitoring, with various applications being studied for construction engineering and management in construction industry.
  • 54
  • 08 Feb 2024
Topic Review
3D Placement of a New Tethered UAV
Unmanned aerial vehicles (UAVs) have become an essential component in many wireless communication systems because of their rapid deployment, mobility, and flexibility.
  • 574
  • 07 Feb 2022
Topic Review
3D Printed and Conventional Membranes
Additive manufacturing, also called 3D printing (3DP), is considered to be a possible approach to produce custom membranes with more manufacturing control than any other method of membrane manufacturing available today. Polymer membranes are central to the proper operation of several processes used in a wide range of applications. The production of these membranes relies on processes such as phase inversion, stretching, track etching, sintering, or electrospinning. Results show that very few membrane materials are used as 3D-printed membranes. Such membranes showed acceptable performance, better structures, and less environmental impact compared with those of conventional membranes.
  • 851
  • 18 Mar 2022
Topic Review
3D Printed Electromagnetic Vibration Harvesters
Energy harvesting is the utilisation of ambient energy in order to power electronics such as wireless sensor nodes (WSN) or wearables without the need of batteries. This allows to operate the node over a much longer time period compared to battery-powered devices along with lower maintenance efforts. Furthermore, the low-maintenance requirements allow to operate these WSNs in environments with limited or no accessibility.
  • 920
  • 05 Nov 2021
Topic Review
3D Printed Integrated Sensors
The integration of 3D printed sensors into hosting structures has become a growing area of research due to simplified assembly procedures, reduced system complexity, and lower fabrication cost. Embedding 3D printed sensors into structures or bonding the sensors on surfaces are the two techniques for the integration of sensors. 
  • 111
  • 26 Dec 2023
  • Page
  • of
  • 677