Topic Review
Sphingosine-1-Phosphate and Platelets in Diseases
Sphingosine-1-phosphate (S1P) is a versatile signaling lipid involved in the regulation of numerous cellular processes. S1P regulates cellular proliferation, migration, and apoptosis as well as the function of immune cells. S1P is generated from sphingosine (Sph), which derives from the ceramide metabolism. In particular, high concentrations of S1P are present in the blood. This originates mainly from erythrocytes, endothelial cells (ECs), and platelets. While erythrocytes function as a storage pool for circulating S1P, platelets can rapidly generate S1P de novo, store it in large quantities, and release it when the platelet is activated. Platelets can thus provide S1P in a short time when needed or in the case of an injury with subsequent platelet activation and thereby regulate local cellular responses. In addition, platelet-dependently generated and released S1P may also influence long-term immune cell functions in various disease processes, such as inflammation-driven vascular diseases. New pharmacological approaches that target the auto- or paracrine effects of S1P may be therapeutically helpful in the future for pathological processes involving S1P.
  • 437
  • 15 Sep 2022
Topic Review
Biologics in Uveitis Treatment
Biological drugs, especially those targeting anti-tumour necrosis factor α (TNFα) molecule, have revolutionized the treatment of patients with non-infectious uveitis (NIU), a sight-threatening condition characterized by ocular inflammation that can lead to severe vision threatening and blindness. 
  • 437
  • 15 Mar 2023
Topic Review
Cyclodextrins as Anti-inflammatory Agents
Cyclodextrins (CDs) are a well-known excipient for complexing and drug delivery. Anti-inflammatory drugs and bioactive compounds with similar activities have been favored from these CD processes. CDs also illustrate anti-inflammatory activity per se.
  • 434
  • 12 Oct 2021
Topic Review
Asthma-Polycystic Ovary Overlap Syndrome
Asthma is a heterogeneous inflammatory disease characterized by abnormalities in immune response. Due to the inherent complexity of the disease and the presence of comorbidities, asthma control is often difficult to obtain. In asthmatic patients, an increased prevalence of irregular menstrual cycles, infertility, obesity, and insulin resistance has been reported.
  • 434
  • 21 Jun 2023
Topic Review
TG2 in Inflammation and Sepsis
Transglutaminase 2 (TG2) is a crosslinking enzyme that forms a covalent bond between lysine and glutamine. TG2 plays important roles in diverse cellular processes, including extracellular matrix stabilization, cytoskeletal function, cell motility, adhesion, signal transduction, apoptosis, and cell survival.
  • 433
  • 10 Mar 2021
Topic Review
FAAH, MAGL, and DAGL in Obesity Treatment
The endocannabinoid system (ECS) plays an integral role in maintaining metabolic homeostasis and may affect hunger, caloric intake, and nutrient absorption. Obesity has been associated with higher levels of the endogenous cannabinoid transmitters (endocannabinoids). Therefore, the ECS is an important target in obesity treatment. Modulating the enzymes that synthesize and degrade endocannabinoids, namely fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and diacylglycerol lipase (DAGL), may be a promising strategy to treat obesity.
  • 433
  • 18 Jan 2022
Topic Review
Sex-Related Differences in Pharmacological Response to Opioids
Clinical experience proves that pharmacological response may vary between the two sexes since pathophysiological dissimilarities between men and women significantly influence the pharmacokinetics and pharmacodynamics of drugs. Opioids seem to produce better analgesia in women especially when they are administered for a prolonged period of time.
  • 432
  • 15 Jun 2022
Topic Review
Fatty Acid Ethanolamides and Receptors
Oleoylethanolamide and palmitoylethanolamide are members of the fatty acid ethanolamide family, also known as acylethanolamides. Their physiological effects, including glucose homeostasis, anti-inflammation, anti-anaphylactic, analgesia, and hypophagia, have been reported. They have affinity for different receptor proteins, including nuclear receptors such as PPARα, channels such as TRPV1, and membrane receptors such as GPR119 and GPR55. In the present review, the pathophysiological functions of fatty acid ethanolamides have been discussed from the perspective of receptor pharmacology and drug discovery.
  • 431
  • 30 Apr 2021
Topic Review
Pathophysiology of Drug-Induced Hyponatremia
Drug-induced hyponatremia caused by renal water retention is mainly due to syndrome of inappropriate antidiuresis (SIAD). SIAD can be grouped into syndrome of inappropriate antidiuretic hormone secretion (SIADH) and nephrogenic syndrome of inappropriate antidiuresis (NSIAD). The former is characterized by uncontrolled hypersecretion of arginine vasopressin (AVP), and the latter is produced by intrarenal activation for water reabsorption and characterized by suppressed plasma AVP levels. Desmopressin is useful for the treatment of diabetes insipidus because of its selective binding to vasopressin V2 receptor (V2R), but it can induce hyponatremia when prescribed for nocturnal polyuria in older patients. Oxytocin also acts as a V2R agonist and can produce hyponatremia when used to induce labor or abortion. 
  • 430
  • 25 Oct 2022
Topic Review
Nanomedicines for Overcoming Cancer Drug Resistance
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. Nanomedicines have paved the way for effective treatment of cancer by rationally designing strategies such as passive targeted drug delivery, active targeted drug delivery, co-delivery of combinatorial agents and multimodal combination therapy, and have broad prospects in overcoming drug resistance. It is believed that nanomedicines will be an attractive strategy for reversing or overcoming cancer drug resistance.
  • 429
  • 18 Aug 2022
  • Page
  • of
  • 106
Video Production Service