Topic Review
Mast Cell Functions
Mast cells (MCs) are well-known as key effector cells of type I allergic reactions, commonly named anaphylactic responses.
  • 775
  • 02 Feb 2021
Topic Review
Massive Parallel Sequencing
Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation sequencing. Some of these technologies emerged in 1994-1998 and have been commercially available since 2005. These technologies use miniaturized and parallelized platforms for sequencing of 1 million to 43 billion short reads (50-400 bases each) per instrument run. Many NGS platforms differ in engineering configurations and sequencing chemistry. They share the technical paradigm of massive parallel sequencing via spatially separated, clonally amplified DNA templates or single DNA molecules in a flow cell. This design is very different from that of Sanger sequencing—also known as capillary sequencing or first-generation sequencing—that is based on electrophoretic separation of chain-termination products produced in individual sequencing reactions.
  • 2.1K
  • 29 Sep 2022
Topic Review
Mass Spectrometry Investigation of ATP-Binding Cassette Proteins
Drug resistance remains one of the main causes of poor outcome in cancer therapy. It is also becoming evident that drug resistance to both chemotherapy and to antibiotics is driven by more than one mechanism. So far, there are at least eight recognized mechanisms behind such resistance. In normal tissues, ATP-binding cassette (ABC)  transporters protect the cells from the toxic effects of xenobiotics, whereas in tumor cells, they reduce the intracellular concentrations of anticancer drugs, which ultimately leads to the emergence of multidrug resistance (MDR). A deeper understanding of the structures and the biology of these proteins is central to current efforts to circumvent resistance to both chemotherapy, targeted therapy, and antibiotics. 
  • 122
  • 04 Feb 2024
Topic Review
Marginal Zone Precursor-Like in the Context of HIV
Marginal zone (MZ) B-cells are innate-like, and possess a polyreactive B-cell receptor (BCR) and several pattern recognition receptors (PRR) [1,2]. They are known to generate low-affinity first-line antibody responses against invading pathogens such as encapsulated bacteria.
  • 283
  • 18 Apr 2022
Topic Review
Marginal Zone Precursor-Like in Diseases
Marginal zone (MZ) B-cells are innate-like, and possess a polyreactive B-cell receptor (BCR) and several pattern recognition receptors (PRR). They are known to generate low-affinity first-line antibody responses against invading pathogens such as encapsulated bacteria.
  • 270
  • 22 Apr 2022
Topic Review
Marginal Zone B-Cell Populations
Marginal zone (MZ) B-cells are innate-like, and possess a polyreactive B-cell receptor (BCR) and several pattern recognition receptors (PRR). They are known to generate low-affinity first-line antibody responses against invading pathogens such as encapsulated bacteria. Unfortunately, deregulations affecting MZ B-cell populations have been reported in the context of Human Immunodeficiency Virus (HIV) and other chronic inflammatory conditions. 
  • 683
  • 22 Apr 2022
Topic Review
MAPK Pathways in Cancer Metastasis
Metastasis is perhaps the most common reason for treatment failure in cancer patients, as well as the leading cause of cancer-related death. Mitogen-activated protein kinase (MAPK) are serine/threonine-protein kinases that can be activated by a variety of extracellular stimuli including growth factors, cytokines, insulin, environmental factors, and oxidative and genotoxic stress. It is becoming increasingly clear that MAPKs are involved in all the steps required for hyperproliferating cells to develop into metastatic tumors. However, scholars are currently lacking in vivo data to fully understand how MAPK signaling pathways can affect the progression of metastatic disease. 
  • 1.9K
  • 26 May 2022
Topic Review
Manganese Superoxide Dismutase in Diseases
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body’s antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. 
  • 531
  • 03 Jan 2023
Topic Review
Mammalian Synapse by the Post-Translational Modification SUMOylation
Neurotransmission occurs within highly specialized compartments forming the active synapse where the complex organization and dynamics of the interactions are tightly orchestrated both in time and space. Post-translational modifications (PTMs) are central to these spatiotemporal regulations to ensure an efficient synaptic transmission. SUMOylation is a dynamic PTM that modulates the interactions between proteins and consequently regulates the conformation, the distribution and the trafficking of the SUMO-target proteins. SUMOylation plays a crucial role in synapse formation and stabilization, as well as in the regulation of synaptic transmission and plasticity. 
  • 279
  • 08 Mar 2024
Topic Review
Mammalian Circadian Rhythms and Ubiquitin Ligases
Circadian clocks evolved to enable organisms to anticipate and prepare for periodic environmental changes driven by the day–night cycle. This internal timekeeping mechanism is built on autoregulatory transcription–translation feedback loops that control the rhythmic expression of core clock genes and their protein products. The levels of clock proteins rise and ebb throughout a 24-h period through their rhythmic synthesis and destruction. In the ubiquitin–proteasome system, the process of polyubiquitination, or the covalent attachment of a ubiquitin chain, marks a protein for degradation by the 26S proteasome. The process is regulated by E3 ubiquitin ligases, which recognize specific substrates for ubiquitination.
  • 452
  • 21 Sep 2022
  • Page
  • of
  • 161
ScholarVision Creations