Topic Review
Transfer RNAs Present in Extracellular Vesicles
Extracellular vesicles (EVs) are small cargo-containing structures with a lipid bilayer but do not have the cellular machinery required to replicate. They have been shown to play a role in cell-to-cell communication, as they can be found to transport biological material including proteins, lipids, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA) between cells, leading to cellular changes within multi-cellular organisms. It is a process that has been conserved through evolution, found both in prokaryotes and eukaryotes.
  • 367
  • 21 Apr 2022
Topic Review
Transcriptionally Active Chromatin Structure
Chromatin structure can either positively or negatively regulates transcription and plays an essential role in eukaryotic gene expression and cell identity. 
  • 933
  • 13 May 2021
Topic Review
Transcription
Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins are said to produce messenger RNA (mRNA). Other segments of DNA are copied into RNA molecules called non-coding RNAs (ncRNAs). Averaged over multiple cell types in a given tissue, the quantity of mRNA is more than 10 times the quantity of ncRNA (though in particular single cell types ncRNAs may exceed mRNAs). The general preponderance of mRNA in cells is valid even though less than 2% of the human genome can be transcribed into mRNA (Human genome), while at least 80% of mammalian genomic DNA can be actively transcribed (in one or more types of cells), with the majority of this 80% considered to be ncRNA. Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript. Transcription proceeds in the following general steps: If the stretch of DNA is transcribed into an RNA molecule that encodes a protein, the RNA is termed messenger RNA (mRNA); the mRNA, in turn, serves as a template for the protein's synthesis through translation. Other stretches of DNA may be transcribed into small non-coding RNAs such as microRNA, transfer RNA (tRNA), small nucleolar RNA (snoRNA), small nuclear RNA (snRNA), or enzymatic RNA molecules called ribozymes as well as larger non-coding RNAs such as ribosomal RNA (rRNA), and long non-coding RNA (lncRNA). Overall, RNA helps synthesize, regulate, and process proteins; it therefore plays a fundamental role in performing functions within a cell. In virology, the term transcription may also be used when referring to mRNA synthesis from an RNA molecule (i.e., equivalent to RNA replication). For instance, the genome of a negative-sense single-stranded RNA (ssRNA -) virus may be a template for a positive-sense single-stranded RNA (ssRNA +)[clarification needed]. This is because the positive-sense strand contains the sequence information needed to translate the viral proteins needed for viral replication. This process is catalyzed by a viral RNA replicase.[clarification needed]
  • 2.6K
  • 14 Apr 2023
Topic Review
Traditional Japanese Distilled Liquor, shochu
The traditional Japanese single distilled liquor, which uses koji and yeast with designated ingredients, is called “honkaku shochu.” It is made using local agricultural products and has several types, including barley shochu, sweet potato shochu, rice shochu, and buckwheat shochu. In the case of honkaku shochu, black koji fungus (Aspergillus luchuensis) or white koji fungus (Aspergillus luchuensis mut. kawachii) is used to (1) saccharify the starch contained in the ingredients, (2) produce citric acid to prevent microbial spoilage, and (3) give the liquor its unique flavor.
  • 823
  • 09 Aug 2021
Topic Review
TP53 and Testicular Germ Cell Tumors
Germ cell tumors (GCTs) are the most common solid malignancies in young men. Despite the high frequency of these cancers within this defined age group, the discovery of the exceptional sensitivity of these tumors to the platinum DNA crosslinking compound cisplatin has led to the survival of most patients, with the current five-year survival rate exceeding 95%.
  • 419
  • 05 Nov 2021
Topic Review
TP53
TP53 tumor suppressor gene is a key player for cellular homeostasis.
  • 459
  • 02 Feb 2021
Topic Review
Toxoplasma gondii and Plasmodium spp.
Microtubule organizing centers (MTOCs) perform critical cellular tasks by nucleating, stabilizing, and anchoring microtubule’s minus ends. These capacities impact tremendously a wide array of cellular functions ranging from ascribing cell shape to orchestrating cell division and generating motile structures, among others. The phylum Apicomplexa comprises over 6000 single-celled obligate intracellular parasitic species.
  • 561
  • 16 Dec 2021
Topic Review
Tousled-like Kinase 1 in DNA Damage Repair
DNA damage repair lies at the core of all cells’ survival strategy, including the survival strategy of cancerous cells. Therefore, targeting such repair mechanisms forms the major goal of cancer therapeutics. The mechanism of DNA repair has been tousled with the discovery of multiple kinases. Studies on tousled-like kinases have brought significant clarity on the effectors of these kinases which stand to regulate double-strand break (DSB) repair. 
  • 165
  • 11 Sep 2023
Topic Review
Tour of the Nuclear Pore Complex Architecture
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500–1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. 
  • 297
  • 17 Jun 2022
Topic Review
Torsin AAA+ Proteins
Torsin ATPases are members of the AAA+ (ATPases associated with various cellular activities) superfamily of proteins, which participate in essential cellular processes. While AAA+ proteins are ubiquitously expressed and demonstrate distinct subcellular localizations, Torsins are the only AAA+ to reside within the nuclear envelope (NE) and endoplasmic reticulum (ER) network. Moreover, due to the absence of integral catalytic features, Torsins require the NE- and ER-specific regulatory cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain like LAP1 (LULL1), to efficiently trigger their atypical mode of ATP hydrolysis. Despite their implication in an ever-growing list of diverse processes, the specific contributions of Torsin/cofactor assemblies in maintaining normal cellular physiology remain largely enigmatic. Resolving gaps in the functional and mechanistic principles of Torsins and their cofactors are of considerable medical importance, as aberrant Torsin behavior is the principal cause of the movement disorder DYT1 early-onset dystonia.
  • 442
  • 30 Jun 2021
  • Page
  • of
  • 161
Video Production Service