Topic Review
CO2 Hydroboration
The use of CO2 as C1 building block for chemical synthesis is receiving growing attention, due to the potential of this simple molecule as abundant and cheap renewable feedstock. Among the possible reductants used in the literature to bring about CO2 reduction to C1 derivatives, hydroboranes have found various applications, in the presence of suitable homogenous catalysts. The main results obtained since 2016 in the synthetic design of main group, first and second row transition metals for use as catalysts for CO2 hydroboration are summarized.
  • 1.1K
  • 18 Apr 2024
Topic Review
Chemical and Biological Properties of Xanthohumol
Xanthohumol (Xn), a prenylated chalcone found in Hop (Humulus lupulus L.), has been shown to have potent anti-aging, diabetes, inflammation, microbial infection, and cancer properties. 
  • 59
  • 22 Mar 2024
Topic Review
Silicon, Organic and Perovskite Solar Cells
The journey of photovoltaic (PV) cell technology is a testament to human ingenuity and the relentless pursuit of sustainable energy solutions. From the early days of solar energy exploration to the sophisticated systems of today, the evolution of PV cells has been marked by groundbreaking advancements in materials and manufacturing processes. The initial phase of solar cell development was characterized by the use of crystalline silicon, a material that has maintained its prominence due to its proven efficiency and durability. The progression from the initial 15% efficiency in the 1950s to the current levels nearing 28% epitomizes the significant strides that have been made in enhancing solar cell performance. This evolution is a clear indicator of how material advancements have been instrumental in propelling the solar industry forward.
  • 203
  • 12 Mar 2024
Topic Review
Copper–Sulfur Composite with Carbon-Based Materials for Supercapacitors Applications
Supercapacitors (SCs) are a novel type of energy storage device that exhibit features such as a short charging time, a long service life, excellent temperature characteristics, energy saving, and environmental protection. The capacitance of SCs depends on the electrode materials. Currently, carbon-based materials, transition metal oxides/hydroxides, and conductive polymers are widely used as electrode materials. However, the low specific capacitance of carbon-based materials, high cost of transition metal oxides/hydroxides, and poor cycling performance of conductive polymers as electrodes limit their applications. Copper–sulfur compounds used as electrode materials exhibit excellent electrical conductivity, a wide voltage range, high specific capacitance, diverse structures, and abundant copper reserves, and have been widely studied in catalysis, sensors, supercapacitors, solar cells, and other fields. 
  • 91
  • 04 Mar 2024
Topic Review
The Hydrodeoxygenation of Lignin-Derived Fractions
Lignocellulosic biomass is a raw material used for the production of bio-oils and black liquors. These biomass-derived fractions offer promising paths for the production of valuable chemical products. Various catalytic methods have been investigated for upgrading the biomass-derived fractions. Researchers are interested in the hydrodeoxygenation process (HDO); in this process, the oxygen groups are eliminated by breaking the C-O bonds and water as a product. Crucial factors influencing this optimization include temperature, hydrogen pressure, catalyst selection, and physicochemical attributes of the catalyst itself, such as the surface area, porosity, and acid–base properties. However, the intrinsic nature of lignin requires careful investigation. The chemical structural network of this biopolymer is significantly influenced by factors such as plant species and extraction process. Understanding and accounting for these variables are imperative for tailoring processes that efficiently harness the potential of lignin and its derivatives.
  • 57
  • 29 Feb 2024
Topic Review
Use of Plant Extracts as Sustainable Corrosion Inhibitors
Corrosion inhibitors have traditionally been utilised to protect copper alloy sculptures from corrosion despite the recognised environmental and human health risks. Knowing the associated toxicity, ongoing extensive research seeks alternative substances for corrosion reduction, giving rise to the emergence of green inhibitors. In this pursuit, plant extract inhibitors have gained attention, particularly in the heritage field. 
  • 114
  • 28 Feb 2024
Topic Review
Metal–Organic Framework-Based Membranes for Gas Separation
Metal–organic frameworks (MOFs) represent the largest class of materials among crystalline porous materials ever developed, and have attracted attention as core materials for separation technology. Their extremely uniform pore aperture and nearly unlimited structural and chemical characteristics have attracted great interest and promise for applying MOFs to adsorptive and membrane-based separations. 
  • 101
  • 28 Feb 2024
Topic Review
Mechanisms of Gas-Phase Oxidative Dehydrogenation of n-Octane
The oxidative dehydrogenation (ODH) of alkanes, whereby hydrogen is removed to form unsaturated compounds, is an important process, particularly in the petrochemical industry. The ODH of lighter alkanes (C3–C6) is well-reported in the literature, and there are several reports on the ODH of n-octane (C8).
  • 168
  • 23 Feb 2024
Topic Review
SIMS Applications in Metals and Alloys
Secondary Ion Mass Spectrometry (SIMS) is a powerful mass spectral imaging (MSI) technique, and it has been extensively employed for comprehensive surface analysis and characterization of materials. Its root traces back to 1910, and its early applications are in inorganic materials and semiconductors. During SIMS analysis, a high-energy primary ion beam bombards the solid surface. This interaction with the surface induces the emission of secondary ions (SIs), different from the primary ions, as well as neutral particles. These emanations originate from the top few layers of atoms at the surface. Subsequently, a mass spectrometer analyzes the extracted secondary ions, providing valuable insights into the composition and structural characteristics of the material composition. In contemporary applications, SIMS has evolved into an indispensable tool across diverse fields, such as materials research, medical research, geology, cosmochemistry, and the life sciences.
  • 80
  • 19 Feb 2024
Topic Review
Metal–Organic Framework-Based Nanozymes
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal–organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. 
  • 68
  • 17 Feb 2024
  • Page
  • of
  • 29