Topic Review
“Brick-and-Mortar” Composites Made of 2D Carbon Nanoparticles
Among all biomimetic materials, nacre has drawn great attention from the scientific community, thanks to superior levels of strength and toughness and its brick-and-mortar (B&M) architecture. However, achieving the desired performances is challenging since the mechanical response of the material is influenced by many factors, such as the filler content, the matrix molecular mobility and the compatibility between the two phases. Most importantly, the properties of a macroscopic bulk material strongly depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases. Consequently, poor mechanical performances of the material are associated with interface issues and low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at the chemical level enhances the mechanical response of the material. 
  • 605
  • 27 Apr 2022
Topic Review
(−)-Methyl-Oleocanthal, a New Oleocanthal Metabolite
The antioxidant and anti-inflammatory responses of (−)-methyl-oleocanthal (met-OLE), a new metabolite of the extra virgin olive oil (EVOO) phenolic oleocanthal (OLE), were explored in lipopolysaccharide (LPS)-induced murine peritoneal macrophages. Possible signaling pathways and epigenetic modulation of histones were studied. Met-OLE inhibited LPS-induced intracellular reactive oxygen species (ROS) and nitrite (NO) production and decreased the overexpression of the pro-inflammatory enzymes COX-2, mPGES-1 and iNOS in murine macrophages.
  • 520
  • 13 Jan 2022
Topic Review
(Fe-Co-Ni-Zn)-Based Metal–Organic Framework-Derived Electrocatalyst for Zinc–Air Batteries
Zinc–air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-ion batteries (LIBs), primarily due to their impressive energy density and low cost. However, the efficacy of zinc–air batteries is heavily dependent on electrocatalysts, which play a vital role in enhancing reaction efficiency and stability. This research highlights the crucial significance of electrocatalysts in zinc–air batteries and explores the rationale behind employing Fe-Co-Ni-Zn-based metal–organic framework (MOF)-derived hybrid materials as potential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy, high catalytic activity, tunability, and structural stability. Various synthesis methods and characterization techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable for applications in ZABs. Furthermore, they demonstrate notable capabilities in the realm of ZABs, encompassing elevated energy density, efficacy, and prolonged longevity. It is imperative to continue extensively researching and developing this area to propel the advancement of ZAB technology forward and pave the way for its practical implementation across diverse fields.
  • 196
  • 16 Oct 2023
Topic Review
[18F]Difluoromethyl Heteroaryl-Sulfones
The suitability of the 18F radioisotope in positron emission tomography (PET) demanded novel approaches for 18F-fluorination and 18F-fluoroalkylation. The difluoromethyl (CF2H) group has gained increasing attention in medicinal chemistry due to its lipophilic hydrogen-bond donor properties. In non-radioactive chemistry, difluoromethyl heteroaryl-sulfones has been extensively used in difluoromethylation of substrates bearing C=C, C≡C, and C≡N bonds by visible light photoredox catalysis. Herein, we highlight our recent work on the synthesis of [18F]difluoromethyl heteroaryl-sulfones with improved molar activities and their application in photoinduced C-H 18F-difluoromethylation of N-containing heteroarenes via a radical-mediated pathway.
  • 1.3K
  • 25 Aug 2021
Topic Review
[M(Salen)] Complexes, Their Polymers, and Composites Based Thereon
The polymers of square–planar complexes of 3d metal (M) atoms with tetradentate N2O2 Schiff base ligands, the so-called salen complexes ([M(Salen)]), are characterized by high redox conductivity, electrochromic behavior, and selective catalytic activity in heterogeneous reactions (including electrocatalysis). An important advantage of these polymers is also their high thermal stability (up to 350 °C) compared with monomer complexes due to their conductive polymer matrix. It is also expected that the synthesis of nanocomposites based on poly-[M(Salen)] and various forms of carbon (mesoporous and activated carbon), including nanostructured ones (carbon nanotubes, graphene, and nanoglobular carbon), will lead to the development of materials with improved energetic, catalytic, and other characteristics. This quality improvement is achieved due to the uniform distribution of the polymer on the surface of the carbon component of the composite material, which has a high specific surface area, electrical conductivity, and mechanical properties (strength, elasticity).
  • 68
  • 18 Feb 2024
Topic Review
{001} Faceted Anatase TiO2-Based Composites
For anatase TiO2, the {001} crystal facets are the most reactive because they exhibit unique surface characteristics such as visible light responsiveness, dissociative adsorption, efficient charge separation capabilities and photocatalytic selectivity. In this review, a concise survey of the literature in the field of {001} dominated anatase TiO2 crystals and their composites is presented. Even though the design and morphologically controlled synthesis of TiO2-001 is considered to be a hot spot in scientific research, it still has some drawbacks like its wide band gap and high recombination rate. These drawbacks can easily be overcome by coupling them with other materials to form TiO2-001-based composites. This review focusses on the synthesis, properties and applications of TiO2-001-based composites. 
  • 874
  • 12 Nov 2021
Topic Review
1,2-cis glycosylation
Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored.
  • 167
  • 09 Aug 2023
Topic Review
Cannabis sativa Bioactive Compounds in Colorectal Cancer
Cannabis sativa is a multipurpose plant that has been used in medicine for centuries. Considerable research has focused on the bioactive compounds of this plant, particularly cannabinoids and terpenes. Among other properties, these compounds exhibit antitumor effects in several cancer types, including colorectal cancer (CRC). Cannabinoids show positive effects in the treatment of CRC by inducing apoptosis, proliferation, metastasis, inflammation, angiogenesis, oxidative stress, and autophagy. Terpenes, such as β-caryophyllene, limonene, and myrcene, have also been reported to have potential antitumor effects on CRC through the induction of apoptosis, the inhibition of cell proliferation, and angiogenesis. In addition, synergy effects between cannabinoids and terpenes are believed to be important factors in the treatment of CRC. 
  • 314
  • 18 May 2023
Topic Review
Chenopodium album
Bathua (Chenopodium album) is a rich source of extensive-ranging nutrients, including bio-active carbohydrates, flavonoids and phenolics, minerals, and vitamins that translate to countless health benefits such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and antioxidant activity. Ascaridole, an important phytoconstituent present in aerial parts of the plant, contributes to its anthelmintic property. 
  • 559
  • 05 Jul 2023
Topic Review
Citrus Uses in the Food Industry
Citrus fruits occupy an important position in the context of the fruit trade, considering that both fresh fruits and processed products are produced on a large scale. Citrus fruits are recognized as an essential component of the human diet, thanks to their high content of beneficial nutrients such as vitamins, minerals, terpenes, flavonoids, coumarins and dietary fibers. Among these, a wide range of positive biological activities are attributed to terpenes and flavonoids derivatives.
  • 1.6K
  • 03 Mar 2023
  • Page
  • of
  • 467