Topic Review
Representative Applications of Conjugated Nanomedicine
Chemotherapy is one of the standard methods for the clinical treatment of malignant tumors. Due to the heterogeneity of tumors and the complexity of their pathological mechanisms, a single chemotherapeutic drug is usually unable to eradicate cancer cells. It may also encounter some problems, such as toxic side effects induced by high doses of drugs and obtaining multidrug resistance (MDR) after repeated treatment. These problems then increase the likelihood of cancer metastasis or recurrence. The emergence of the combination of multiple antineoplastic drugs makes up for the deficiency of single drug application. Accordingly, the overall treatment benefit of the multidrug combination is usually higher than that of single drug administration by virtue of different therapeutic mechanisms. More importantly, the drug dose used during synergistic therapy usually decreases and the unfavorable side effects could be weakened under the premise of the same or better therapeutic efficacy. Thereinto, conjugated nanomedicine, as an important type of nanomedicine, can not only possess the targeted delivery of chemotherapeutics with great precision but also achieve controlled drug release to avoid adverse effects. Meanwhile, conjugated nanomedicine provides the platform for combining several different therapeutic approaches (chemotherapy, photothermal therapy, photodynamic therapy, thermodynamic therapy, immunotherapy, etc.) with the purpose of achieving synergistic effects during cancer treatment.
  • 405
  • 09 Aug 2022
Topic Review
Renewable Carbon
Renewable carbon is one of the most important materials which have been used in a wide range of applications, such as chemical catalysis, medicinal purification, environmental cleaning and metal extraction. Meanwhile, with the development of technology, the use field of renewable carbon keeps expanding to new areas, such as electrode and super-capacitors for energetic cell, as well as many other innovative industries. Similar to carbon nanotube (CNT) or graphene, it has variable characteristics of surface groups, along with high interface reactivity. These surface groups provide abundant reaction sites for chemical modification via electrostatic/van der Waals force, chemical bonding or noncovalent π-π interactions, thus imparting carbon particles with excellent natural affinity toward a large number of substrates. Moreover, the highly developed porous structure renders renewable carbon with a large range of surface area (500-3000 m2/g). It consists of thin graphite layers with exceptional mechanical strength, which highlights its great potential to be used as reinforcement agent in advanced packaging composites.
  • 859
  • 01 Nov 2020
Topic Review
Renal Nanomedicine
The kidneys are vital organs performing several essential functions. Their primary function is the filtration of blood and the removal of metabolic waste products as well as fluid homeostasis. Renal filtration is the main pathway for drug removal, highlighting the importance of this organ to the growing field of nanomedicine. The kidneys (i) have a key role in the transport and clearance of nanoparticles (NPs), (ii) are exposed to potential NPs’ toxicity, and (iii) are the targets of diseases that nanomedicine can study, detect, and treat. 
  • 847
  • 12 Aug 2021
Topic Review
Removal of Purines from Beer
Beer corresponds to a fermented alcoholic beverage composed of several components, including purine compounds. These molecules, when ingested by humans, can be catabolized into uric acid, contributing to uric acid’s level increase in serum, which may lead to hyperuricemia and gout. To assure a proper management of this disease, physicians recommend restrictive dietary measures, particularly by avoiding the consumption of beer. Therefore, it is of relevance to develop efficient methods to remove purine compounds from alcoholic beverages such as beer. There are several enzymatic, biological, and adsorption methods reported envisaging purine compounds’ removal. Some enzymatic and biological methods present drawbacks, which can be overcome by adsorption methods. Within adsorption methods, adsorbent materials, such as activated carbon or charcoal, have been reported and applied to beer or wort samples, showing an excellent capacity for adsorbing and removing purine compounds. By ensuring the selective removal of purine compounds from this beverage, beer can be taken by hyperuricemic and gouty patients, avoiding restrictive dietary measures, while decreasing the related healthcare economic burden. 
  • 2.4K
  • 23 Nov 2021
Topic Review
Removal of Pesticides from Waters
Pesticides are pollutants found in wastewater due to increasing agricultural activities over the years. Inappropriate dosing of pesticides results in the dispersal of active ingredients in the environment. The complete removal of pesticides from wastewater is an immediate concern due to their high toxicity and mobility. At present, adsorption is one of the most widely used methods for pesticide removal, in which synthetic zeolites and mesoporous silica materials are extensively applied. This article presents a systematic and comparative review of the applications and comparison of these adsorbents, based on the data reported in the literature.
  • 704
  • 07 Jul 2021
Topic Review
Remediation of Textile-Dye-Containing Wastewater
Water makes up most of the Earth, although just 0.3% is usable for people and animals. The huge oceans, icecaps, and other non-potable water resources make up the remaining 99.7%. Water quality has declined due to pollution from population growth, industry, unplanned urbanization, and poor water management. The textile industry has significant global importance, although it also stands as a major contributor to wastewater generation, leading to water depletion and ecotoxicity. This issue arises from the extensive utilization of harmful chemicals, notably dyes.
  • 573
  • 09 Jan 2024
Topic Review
Relevance of Crystal Forms in the Pharmaceutical Field
The existence of multiple crystal forms of an active pharmaceutical ingredients (API) is relevant not only for the selection of the best solid material to carry through the various stages of drug development, including the choice of dosage and of excipients suitable for drug development and marketing, but also in terms of intellectual property protection and/or extension. This is because the physico-chemical properties, such as solubility, dissolution rate, thermal stability, processability, etc., of the solid API may depend, sometimes dramatically, on the crystal form, with important implications on the drug’s ultimate efficacy.
  • 1.0K
  • 26 Aug 2022
Topic Review
Relaxor Ferroelectrics for Energy Storage
Ferroelectrics (FE) are polar materials with spontaneous polarization that can be reoriented by changing the direction of the external applied electric field.
  • 2.3K
  • 08 Feb 2021
Topic Review
Reinforcement Materials
The role of the reinforcement in a composite material is mainly one of increasing the mechanical and anti-corrosion properties of the system, but the intrinsic properties of nanofillers, as well as their size, morphology, chemical functional groups, and their amounts, influence significantly many more properties of nanocomposites.
  • 389
  • 27 Jul 2023
Topic Review
Regenerative Medicine Bioconjugated Hydrogel Scaffolds
Materials used for regenerative medicine purposes pose a series of challenges in terms of biocompatibility, adaptability and functionality. A way to design functional and compatible materials that mimic soft tissue is to exploit synthetic hydrogels. To widen their activity scope, hydrogels can be coupled with molecular cues to promote tissue regeneration or trigger regeneration processes. Within this entry we asses the criteria to choose the design of a bioconjugated for regenerative medicine purposes, giving relevant examples from the current literature.
  • 570
  • 21 Oct 2020
  • Page
  • of
  • 467
Video Production Service