Topic Review
Hard Carbons as Anodes in Sodium-Ion Batteries
Sodium-ion batteries (SIBs) are regarded as promising alternatives to lithium-ion batteries (LIBs) in the field of energy, especially in large-scale energy storage systems. Tremendous effort has been put into the electrode research of SIBs, and hard carbon (HC) stands out among the anode materials due to its advantages in cost, resource, industrial processes, and safety. However, different from the application of graphite in LIBs, HC, as a disordered carbon material, leaves more to be completely comprehended about its sodium storage mechanism, and there is still plenty of room for improvement in its capacity, rate performance and cycling performance.
  • 758
  • 21 Oct 2022
Topic Review
Halogen-Doped Carbon Dots: Synthesis, Application, and Prospects
Carbon dots (CDs) have many advantages, such as tunable photoluminescence, large two-photon absorption cross-sections, easy functionalization, low toxicity, chemical inertness, good dispersion, and biocompatibility. Halogen doping further improves the optical and physicochemical properties of CDs, extending their applications in fluorescence sensors, biomedicine, photocatalysis, anti-counterfeiting encryption, and light-emitting diodes. The preparation of CDs via the “top-down” and “bottom-up”approaches and the preparation methods and applications of halogen (fluorine, chlorine, bromine, and iodine)-doped CDs were discussed here. The main challenges of CDs in the future are the elucidation of the luminescence mechanism, fine doping with elements (proportion, position, etc.), and their incorporation in practical devices.
  • 591
  • 09 Aug 2022
Topic Review
Halogen Hybrid Flow Batteries
Among the most effective energy systems for stationary applications, a special place is occupied by redox flow battery (RFB) technology, encompassing easy scalability with independent scaling of power density and energy capacity, no detrimental effects of a deep discharge, very low self-discharge, low cost for a large system compared to other types of batteries, and long cycle life.
  • 554
  • 31 Oct 2022
Topic Review
Halogen Bonds
A halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity.
  • 3.2K
  • 08 Dec 2020
Topic Review
Haloanisoles in Wine
Haloanisoles in wine have devastating effects on the aroma and quality of the wine. 2,4,6-trichloroanisole (TCA) was discovered and coined as “cork taint” in 1982. There are many more haloanisoles that contribute to these musty odors, including 2,4,6-Tribromoanisiole (TBA), 2,3,4,6-tetrachloroanisole (TeCA), and pentachloroanisole (PCA). While TCA, TeCA, and PCA can all be traced back to the cork, TBA’s phenol precursor is ubiquitous in building material as a fire retardant, making it a much larger vector. All haloanisoles have the ability to aerosolize and resettle onto surfaces in the winery, making this a very difficult problem to eliminate. 
  • 596
  • 23 Mar 2023
Topic Review
Halloysite-TiO2 Nanocomposites for Water Treatment
Halloysite nanotubes (HNTs) are clay minerals with a tubular structure that can be used for many different applications in place of carbon nanotubes. Indeed, HNTs display low/non-toxicity, are biocompatible, and can be easily prepared. Moreover, the aluminum and silica groups present on HNTs’ inner and outer surfaces facilitate the interaction with various functional agents, such as alkalis, organosilanes, polymers, surfactants, and nanomaterials.
  • 506
  • 16 May 2023
Topic Review
Halloysite Nanotubes
The use of synthetic materials and the attention towards environmental hazards and toxicity impose the development of green composites with natural origins. Clay is one of the candidates for this approach. Halloysite is a natural clay mineral, a member of the Kaolin group, with characteristic tubular morphology, usually named halloysite nanotubes (HNTs).
  • 789
  • 27 Oct 2022
Topic Review
Halloysite Nanofluids
Nanofluids obtained from halloysite and de-ionized water (DI) were prepared by using surfactants and changing pH for heat-transfer applications. The halloysite nanotubes (HNTs) nanofluids were studied for several volume fractions (0.5, 1.0, and 1.5 vol%) and temperatures (20, 30, 40, 50, and 60 °C). 
  • 985
  • 20 Feb 2021
Topic Review
Halide Segregation in Mixed Halide Perovskites
Metal halide perovskites (MHPs) has splendid optoelectronic properties and ease of processing, enabling efficiently fabricating high-performance photovoltaic devices with low-cost. MHPs are easy preparation and processing, but also face inherent instability issues, such as ion migration, halide segregation, phase transition and degradation.
  • 612
  • 04 Mar 2022
Topic Review
Halide Perovskites
Halide perovskites (HPs), with an excellent photoactive nature, dielectric, piezoelectric, ferroelectric, and pyroelectric properties, have been potential candidates for obtaining flexible nanogenerator-based self-powered sensors including light, pressure, and temperature. Additionally, the photo-stimulated dielectric, piezoelectric, and triboelectric properties of HPs make them efficient entrants for developing bimodal and multimode sensors to sense multi-physical signals individually or simultaneously. 
  • 1.3K
  • 30 Jul 2021
  • Page
  • of
  • 467
ScholarVision Creations