Topic Review
Catalytic Hydrogen Evolution Reaction Mechanism of MoS2
MoS2 has long been considered a promising catalyst for hydrogen production. At present, there are many strategies to further improve its catalytic performance, such as edge engineering, defect engineering, phase engineering, and so on. However, at present, there is still a great deal of controversy about the mechanism of MoS2 catalytic hydrogen production. For example, it is generally believed that the base plane of MoS2 is inert; however, it has been reported that the inert base plane can undergo a transient phase transition in the catalytic process to play the catalytic role, which is contrary to the common understanding that the catalytic activity only occurs at the edge. Therefore, it is necessary to further understand the mechanism of MoS2 catalytic hydrogen production. 
  • 229
  • 11 Sep 2023
Topic Review
Catalytic Hydrogenation of Carbon Dioxide
Once fundamental difficulties such as active sites and selectivity are fully resolved, metal-free catalysts such as 3D graphene or carbon nanotubes (CNT) are very cost-effective substitutes for the expensive noble metals used for catalyzing CO2. A viable method for converting environmental wastes into useful energy storage or industrial wealth, and one which also addresses the environmental and energy problems brought on by emissions of CO2, is CO2 hydrogenation into hydrocarbon compounds. The creation of catalytic compounds and knowledge about the reaction mechanisms have received considerable attention. Numerous variables affect the catalytic process, including metal–support interaction, metal particle sizes, and promoters. CO2 hydrogenation into different hydrocarbon compounds like lower olefins, alcoholic composites, long-chain hydrocarbon composites, and fuels, in addition to other categories.
  • 357
  • 28 Jan 2023
Topic Review
Catalytic Materials Development for Fuel Cell Power Generators
Many research teams around the world persistently undertake attempts to create active and stable catalysts for the pre-reforming and steam reforming of diesel and kerosene fuels. The most active and stable catalysts for diesel fuel conversion are Rh- and other precious metal systems supported on oxide carriers containing mobile lattice oxygen, mainly zirconium and cerium oxides.
  • 343
  • 03 Feb 2023
Topic Review
Catalytic Mechanism of Photocatalysts Based on GCN Heterogeneous
In the current world situation, population and industrial growth have become major problems for energy and environmental concerns. Extremely noxious pollutants such as heavy metal ions, dyes, antibiotics, phenols, and pesticides in water are the main causes behind deprived water quality leading to inadequate access to clean water. In this connection, graphite carbon nitride (GCN or g-C3N4) a nonmetallic polymeric material has been utilized extensively as a visible-light-responsive photocatalyst for a variety of environmental applications.
  • 1.0K
  • 16 Jun 2022
Topic Review Peer Reviewed
Catalytic Membrane Ozonation
Catalytic membrane ozonation is a hybrid process that combines membrane filtration and catalytic ozonation. The membrane deposited with an appropriate solid material acts as catalyst. As a consequence, the catalytic membrane contactor can act simultaneously as contactor (i.e., improving the transfer/dissolution of gaseous ozone into the liquid phase), as well as reactor (i.e., oxidizing the organic compounds). It can be used in water and wastewater treatment limiting the disadvantages of membrane filtration (i.e., lower removal rates of emerging contaminants or fouling occurrence) and ozonation (i.e., selective oxidation, low mineralization rates, or bromate (BrO3−) formation). The catalytic membrane ozonation process can enhance the removal of micropollutants and bacteria, inhibit or decrease the BrO3− formation and additionally, restrict the membrane fouling (i.e., the major/common problem of membranes’ use). Nevertheless, the higher operational cost is the main drawback of these processes. 
  • 835
  • 13 Apr 2022
Topic Review
Catalytic Synthesis of Glycerol Carbonate
Glycerol carbonate (GC) belongs to the family of organic carbonates that are regarded as very typical “green chemistry” products for their unique advantages in many fields, such as high boiling point solvents, pharmaceutical intermediates, and material intermediates.
  • 1.6K
  • 10 Feb 2022
Topic Review
Catalytic Synthesis of Terminal Alkene Dimers and Oligomers
Dimers and oligomers of alkenes represent a category of compounds that are in great demand in diverse industrial sectors. Among the developing synthetic methods, the catalysis of alkene dimerization and oligomerization using transition metal salts and complexes is of undoubted interest for practical applications. 
  • 116
  • 24 Jan 2024
Topic Review
Categories of Quantum Photoinitiators
The use of novel photoinitiators (PIs) for free-radical polymerization has attracted significant attention from the scientific community. Quantum PIs, quantum-confined nanoscale crystals with semiconductor properties, have received interest for use in photopolymerization, due to their precisely tunable properties as a function of structural and surface engineering.
  • 440
  • 20 Aug 2021
Topic Review
Cathode Materials of Sodium-Ion Batteries
Emerging energy storage systems have received significant attention along with the development of renewable energy, thereby creating a green energy platform for humans. Lithium-ion batteries (LIBs) are commonly used, such as in smartphones, tablets, earphones, and electric vehicles. However, lithium has certain limitations including safety, cost-effectiveness, and environmental issues. Sodium is believed to be an ideal replacement for lithium owing to its infinite abundance, safety, low cost, environmental friendliness, and energy storage behavior similar to that of lithium. Inhered in the achievement in the development of LIBs, sodium-ion batteries (SIBs) have rapidly evolved to be commercialized. Among the cathode, anode, and electrolyte, the cathode remains a significant challenge for achieving a stable, high-rate, and high-capacity device. 
  • 372
  • 01 Nov 2023
Topic Review
Cathodes for Magnesium-Sulfur Batteries
Large-scale energy storage with high performance and at a reasonable cost are prerequisites for promoting clean energy utilization. With a high theoretical energy density of 1722 Wh·kg−2, high element abundance (e.g., Mg of 23,000 ppm, S of 950 ppm on earth), and low theoretical cost, Mg-S batteries offer considerable potential as candidates for electrical energy storage.
  • 434
  • 18 Apr 2023
  • Page
  • of
  • 465
Video Production Service