Topic Review
Electric Double Layer Based Epidermal Electronics for Healthcare
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. Especially, Electric Double Layer (EDL)-based epidermal sensors show great potential in the application of wearable electronics to detect biological signals due to their high sensitivity, fast response, and excellent stability. The advantages can be attributed to the biocompatibility of the materials, the flexibility of the devices, and the large capacitance due to the EDL effect. 
  • 236
  • 13 Sep 2023
Topic Review
Flame Retarding Mechanism of P-FRs in Polyurethane Elastomer
Polyurethane elastomer (PUE) is a typical block polymer with alternately arranges soft and hard segments. Isocyanates and small molecular chain extenders constitute the hard segment, and the soft segment is composed of polyols. Most phosphorous flame retardants for PUE exhibit two flame-retardant mechanisms, including the gas phase and the condensed phase.
  • 206
  • 12 Sep 2023
Topic Review
Pore-Based Sensing for Virus Particles Detection
Pore-based sensing is a highly sensitive sensing technology for the detection of extremely small particles such as molecules, proteins, and viruses (50–200 nm). Pore-based sensing is conducted by applying an electric field across nanopores, usually made of biomacromolecules, e.g., α-hemolysin or synthetic materials, e.g., graphene and semiconductor. When a particle passes through the pore, changes in the current waveform can be observed. The presence of specific waveform changes indicates the presence of target, and the number of this specific waveform can be used to determine the concentration.
  • 346
  • 12 Sep 2023
Topic Review
Biological Activity of Flavones, Flavonols, and Aurones
Flavonoids are a widely distributed group of natural polyphenolic compounds that are found in plants usually in glycosylated form and have been shown to possess a wide range of biological activities, including antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer properties, making them an attractive target for synthesis and further research.
  • 590
  • 12 Sep 2023
Topic Review
HER2-Positive Breast Cancer Targeted Therapies
Breast cancer represents the most common cancer type and one of the major leading causes of death in the female worldwide population. Overexpression of human epidermal growth factor (HER2), a transmembrane glycoprotein related to the epidermal growth factor receptor, results in a biologically and clinically aggressive breast cancer subtype. It is also the primary driver for tumor detection and progression and, in addition to being an important prognostic factor in women diagnosed with breast cancer, HER2 is a widely known therapeutic target for drug development. In breast cancer, the overexpression of the HER2 receptor makes it a reliable biomarker and a successful therapeutic target. Several strategies have been developed to target HER2, using various targeting molecules including monoclonal antibodies and tyrosine kinase inhibitors, antibody–drug conjugates, small molecules, and peptides.
  • 332
  • 12 Sep 2023
Topic Review
Catalytic Hydrogen Evolution Reaction Mechanism of MoS2
MoS2 has long been considered a promising catalyst for hydrogen production. At present, there are many strategies to further improve its catalytic performance, such as edge engineering, defect engineering, phase engineering, and so on. However, at present, there is still a great deal of controversy about the mechanism of MoS2 catalytic hydrogen production. For example, it is generally believed that the base plane of MoS2 is inert; however, it has been reported that the inert base plane can undergo a transient phase transition in the catalytic process to play the catalytic role, which is contrary to the common understanding that the catalytic activity only occurs at the edge. Therefore, it is necessary to further understand the mechanism of MoS2 catalytic hydrogen production. 
  • 237
  • 11 Sep 2023
Topic Review
Improved and Innovative Accident-Tolerant Nuclear Fuel Materials
Since 2011, there has been an international effort to evaluate the behavior of newer fuel rod materials for the retrofitting of existing light water reactors (LWR). These materials include concepts for the cladding of the fuel and for the fuel itself. The materials can be broadly categorized into evolutionary or improved existing materials and revolutionary or innovative materials. The purpose of the newer materials or accident-tolerant fuels (ATF) is to make the LWRs more resistant to loss-of-coolant accidents and thus increase their operation safety. The benefits and detriments of the three main concepts for the cladding are discussed.
  • 318
  • 11 Sep 2023
Topic Review
Recovery of Waste-Printed Circuit Boards Non-Metallic Components
The reutilization non-metallic components from a waste-printed circuit board (WPCB) has become one of the most significant bottlenecks in the comprehensive reuse of electronic wastes due to its low value and complex compositions, and it has received great attention from scientific and industrial researchers. To effectively address the environmental pollution caused by inappropriate recycling methods, such as incineration and landfill, extensive efforts have been dedicated to achieving the high value-added reutilization of WPCB non-metals in sustainable polymer composites.
  • 182
  • 11 Sep 2023
Topic Review
Structural Characteristics, Classification, and Nomenclature of Glycosphingolipids
Glycosphingolipids (GSLs) are a glycolipid subtype which plays vital roles in numerous biological processes, cell–cell interactions, as well as oncogenesis and ontogenesis. They are ubiquitous molecules found mostly in cell membranes.
  • 260
  • 11 Sep 2023
Topic Review
Pharmacological Properties Improvement by Engineering of Nisin
Nisin is a readily available and cheap lanthipeptide and thus serves as a good model in the search for the tools to engineer lantibiotics with improved pharmacological properties. There are basically two general means to obtain nisin analogs—protein engineering and chemical functionalization of this antibiotic. Although bioengineering techniques have been well developed and enable the creation of nisin mutants of variable structures and properties, they are lacking spectacular effects so far. Chemical modifications of nisin based on utilization of the reactivity of its free amino and carboxylic moieties, as well as reactivity of the double bonds of its dehydroamino acids, are in their infancy.
  • 274
  • 08 Sep 2023
  • Page
  • of
  • 465
Video Production Service