Topic Review
DNA-Based Artificial Transmembrane Channels for Biomedical Applications
Biomolecular channels on the cell membrane are essential for transporting substances across the membrane to maintain cell physiological activity. Artificial transmembrane channels used to mimic biological membrane channels can regulate intra/extracellular ionic and molecular homeostasis, and they elucidate cellular structures and functionalities. Due to their program design, facile preparation, and high biocompatibility, DNA nanostructures have been widely used as scaffolds for the design of artificial transmembrane channels and exploited for ionic and molecular transport and biomedical applications. DNA-based artificial channels can be designed from two structural modules: DNA nanotubes/nanopores as transport modules for mass transportation and hydrophobic segments as anchor modules for membrane immobilization. 
  • 44
  • 19 Mar 2024
Topic Review
Phase Equilibrium Studies in the RE2O3-REF3-LiF System
The solubility of rare earth oxides in molten salt directly affects the selection of operational parameters in the electrolysis process. When the added amount of RE2O3 is less than its solubility, it leads to a decreased electrolytic efficiency. Conversely, an excessive amount of oxide is prone to settle at the bottom of the electrolytic cell, impeding smooth production. The RE2O3 solubility in the fluoride salt can be represented by the phase equilibrium of the RE2O3-REF3-LiF system. The isothermal lines in the primary phase field of rare earth oxide represent the solubility of the oxide in the fluoride salt at the corresponding temperature.
  • 69
  • 18 Mar 2024
Topic Review
Light-Driven Semiconductor-Based Micro/Nanomotors
Micro/nanomotors represent a burgeoning field of research featuring small devices capable of autonomous movement in liquid environments through catalytic reactions and/or external stimuli.
  • 49
  • 18 Mar 2024
Topic Review
Biomedical Applications of Poly(Propylene Carbonate)
Poly(propylene carbonate) (PPC) is an emerging “carbon fixation” polymer that holds the potential to become a “biomaterial of choice” in healthcare owing to its good biocompatibility, tunable biodegradability and safe degradation products. Several physical, chemical and biological modifications of PPC have been achieved by introducing biocompatible polymers, inorganic ions or small molecules, which can endow PPC with better cytocompatibility and desirable biodegradability, and thus enable various applications. Indeed, a variety of PPC-based degradable materials have been used in medical applications including medical masks, surgical gowns, drug carriers, wound dressings, implants and scaffolds. 
  • 81
  • 15 Mar 2024
Topic Review
Phase Equilibrium Studies of Nonferrous Smelting Slags
Pyrometallurgy is the primary technique for the production of many nonferrous metals such as copper, lead, and zinc. The phase equilibrium information of smelting slags plays an important role in the efficient extraction of metals and energy consumption. The experimental technologies used in phase equilibrium studies are compared. The presentation and applications of the pseudo-ternary and pseudo-binary phase diagrams are demonstrated in the Fe–Si–Ca–Zn–Mg–Al–Cu–S–O system. 
  • 85
  • 15 Mar 2024
Topic Review
Mesoporous Carbon in PEMFC Catalysts
Developing durable oxygen reduction reaction (ORR) electrocatalysts is essential to step up the large-scale applications of proton exchange membrane fuel cells (PEMFCs). Traditional ORR electrocatalysts provide satisfactory activity, yet their poor durability limits the long-term applications of PEMFCs. Porous carbon used as catalyst support in Pt/C is vulnerable to oxidation under high potential conditions, leading to Pt nanoparticle dissolution and carbon corrosion.
  • 69
  • 14 Mar 2024
Topic Review
Anthocyanin-Based Polymers for Healthcare Applications
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above-cited areas. 
  • 195
  • 14 Mar 2024
Topic Review
Characteristics of Collagen
Collagen (CLG) is a structural protein composed of amino acids that create collagen fibers, characterized by exceptional strength and high elasticity. This protein is composed of three left-handed α polypeptides that wind around themselves and their axis to form a right-handed superhelix. Its structure varies depending on its functions and place of occurrence. CLG is one of the most important proteins in the human body because it is responsible for maintaining the appropriate structure of tissues and organs and constitutes as much as one-third of the total body protein mass. It occurs, among the main organs in the body that provide appropriate elasticity and strength. It is also an essential building block of the skin; without CLG, it would not be able to perform its functions properly.
  • 74
  • 14 Mar 2024
Topic Review
Two-Photon Absorbing Dendrimers
Dendrimers, arborescent macromolecules exhibiting a large number of functional groups at their surface, appeared as naturally attractive targets to consider as TPA chromophores. Indeed, dendrimers are a special kind of perfectly defined hyperbranched polymers constructed stepwise from a multifunctional core at the periphery of which can be grafted a large density and variety of chromophores.
  • 63
  • 14 Mar 2024
Topic Review
Structural Supercapacitors
Structural supercapacitors (SSCs) are multifunctional energy storage composites (MESCs) that combine the mechanical properties of fiber-reinforced polymers and the electrochemical performance of supercapacitors to reduce the overall mass in lightweight applications with electrical energy consumption. These novel MESCs have huge potentials, and their properties have improved dramatically since their introduction in the early 2000’s. However, the current properties of SSCs are not sufficient for complete energy supply of electrically driven devices. 
  • 95
  • 12 Mar 2024
  • Page
  • of
  • 465