Topic Review
Au(III) Cyclometallated Compounds with 2-Arylpyridines
A large numbers of reports (>100) described molecules (>500) and single crystal X-ray structures (>200) indicated that the Au(III) compounds with 2-arylpyridines* and their derivatives or analogues are interesting from the chemical, spectroscopic, and structural viewpoints. The most popular Au(III)-2PPY* species are those with 2-phenylpyridine* and 2-(4-methylphenyl)pyridine*, while among Au(III)-2ArPY* molecules-those containing 2-benzylpyridine* ring system.
  • 31
  • 15 Mar 2023
Topic Review
Thermal Stability of Layered LTMO2
Layered lithium transition metal (TM) oxides LiTMO2 (TM = Ni, Co, Mn, Al, etc.) are the most promising cathode materials for lithium-ion batteries because of their high energy density, good rate capability and moderate cost. However, the safety issue arising from the intrinsic thermal instability of nickel-based cathode materials is still a critical challenge for further applications in electric vehicles and energy storage power stations.
  • 103
  • 15 Mar 2023
Topic Review
Wall Materials of Peptide Microcapsules
Microencapsulation technology can improve the utilization rate of the active peptides. Microencapsulation technology is a kind of encapsulation technology based on nanocarriers. The microencapsulation of peptides refers to the selection of appropriate wall materials and the use of physical, chemical, or physicochemical methods to embed the active peptides, in order to give play to the advantages of isolating the interaction between the active peptide and the external environment.
  • 56
  • 15 Mar 2023
Topic Review
Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A
Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is under clinical development for metastatic cancers.
  • 17
  • 15 Mar 2023
Topic Review
Surface Treatments of PEEK for Osseointegration to Bone
Polymers, in general, and Poly (Ether-Ether-Ketone) (PEEK) have emerged as potential alternatives to conventional osseous implant biomaterials. Due to its distinct advantages over metallic implants, PEEK has been gaining increasing attention as a prime candidate for orthopaedic and dental implants. Although a myriad of permutations and combinations of different surface treatments are employed to alter the surface topography of PEEK, for the sake of simplicity, these treatments have been classified into the following categories: physical treatment, chemical treatment, surface coating, and composite preparation, with the first surface treatment in the combination determining the classification. Though these terms are arbitrary and could lead to considerable overlap, physical and chemical treatments can be grouped into a subtractive form of surface modification while surface coating can be regarded as an additive form.
  • 24
  • 15 Mar 2023
Topic Review
Mechanochemical Synthesis of Nanoparticles
Various solvent-based approaches have been already used to synthesize porous materials. Mechanochemical synthesis is one of the effective eco-friendly alternatives to the conventional synthesis. It adopts the efficient mixing of reactants using ball milling without or with a very small volume of solvents, gives smaller size nanoparticles (NPs) and larger surface area, and facilitates their functionalization, which is highly beneficial for antimicrobial applications.
  • 12
  • 15 Mar 2023
Topic Review
Nanotechnology for Neurological Disorders after Long COVID Syndrome
Long-term neurological complications, persisting in patients who cannot fully recover several months after severe SARS-CoV-2 coronavirus infection, are referred to as neurological sequelae of the long COVID syndrome. Among the numerous clinical post-acute COVID-19 symptoms, neurological and psychiatric manifestations comprise prolonged fatigue, “brain fog”, memory deficits, headache, ageusia, anosmia, myalgias, cognitive impairments, anxiety, and depression lasting several months. Considering that neurons are highly vulnerable to inflammatory and oxidative stress damages following the overproduction of reactive oxygen species (ROS), neuroinflammation and oxidative stress have been suggested to dominate the pathophysiological mechanisms of the long COVID syndrome. It is emphasized that mitochondrial dysfunction and oxidative stress damages are crucial for the pathogenesis of neurodegenerative disorders. Importantly, antioxidant therapies have the potential to slow down and prevent disease progression. However, many antioxidant compounds display low bioavailability, instability, and transport to targeted tissues, limiting their clinical applications. Various nanocarrier types, e.g., liposomes, cubosomes, solid lipid nanoparticles, micelles, dendrimers, carbon-based nanostructures, nanoceria, and other inorganic nanoparticles, can be employed to enhance antioxidant bioavailability. Here, the potential of phytochemical antioxidants and other neuroprotective agents (curcumin, quercetin, vitamins C, E and D, melatonin, rosmarinic acid, N-acetylcysteine, and Ginkgo Biloba derivatives) in therapeutic strategies for neuroregeneration is highlighted. A particular focus is given to the beneficial role of nanoparticle-mediated drug-delivery systems in addressing the challenges of antioxidants for managing and preventing neurological disorders as factors of long COVID sequelae.  
  • 47
  • 14 Mar 2023
Topic Review
Graphene Oxide Obtained by Different Methods
Two-dimensional sp2 hybridized graphene has become a material of choice in research due to the excellent properties it displays electrically, thermally, optically and mechanically. Noble nanomaterials also present special physical and chemical properties and, therefore, they provide model building blocks in modifying nanoscale structures for various applications, ranging from nanomedicine to catalysis and optics. The introduction of noble metal nanoparticles (NPs) (Au, Ag and Pd) into chemically derived graphene is important in opening new avenues for both materials in different fields where they can provide hybrid materials with exceptional performance due to the synergistical result of the specific properties of each of the materials. 
  • 22
  • 14 Mar 2023
Topic Review
Principle of Cold Spray Technology
Copper (Cu)-based composite coatings have been widely applied in all kinds of important industry fields due to their outstanding comprehensive properties. The preparation temperature of a composite coating is the key factor affecting the properties, so the cold spray (CS) technology is characterized by low-temperature solid-state deposition, which ensures its emergence as the most promising technology for preparing the Cu-based composite coatings. The CS process is achieved using high-pressure gas, during which the solid particles are regulated to impact the substrate at a supersonic speed and then deposited on the substrate surface to form a coating through severe plastic deformation. As a low-temperature solid-state deposition method, CS is characterized by a low deposition temperature, a low oxidation ratio of powder, a high deposition efficiency, little thermal influence on the substrate, etc., by which coatings with low porosity, high compactness, and controllable thickness can be prepared, establishing its indispensable position among coating preparation technologies.
  • 17
  • 14 Mar 2023
Topic Review
Resistive Random-Access Memory
Resistive random access memory (RRAM), also often referred to as a memristor, is a non-volatile memory made from the simple structure of a metal–insulator–metal (MIM) sandwich, which is generally integrated into an elementary crossbar circuit. Resistive random access memory stands out among memory technologies due to its scalability, high-speed operation, and low power consumption. 
  • 60
  • 14 Mar 2023
  • Page
  • of
  • 348
Top
Feedback